Existence of solutions of ordinary differential equations with generalized boundary conditions
HTML articles powered by AMS MathViewer
- by Stephen R. Bernfeld and V. Lakshmikantham
- Trans. Amer. Math. Soc. 182 (1973), 261-274
- DOI: https://doi.org/10.1090/S0002-9947-1973-0326043-2
- PDF | Request permission
Abstract:
An investigation of the existence of solutions of the nonlinear boundary value problem $x’ = f(t,x,y),y’ = g(t,x,y),AV(a,x(a),y(a)) + BW(a,x(a),y(a)) = {C_1},CV(b,x(b),y(b)) + DW(b,x(b),y(b)) = {C_2}$, is made. Here we assume $g,f:[a,b] \times {R^p} \times {R^q} \to {R^p}$ are continuous, and $V,W:[a,b] \times {R^p} \times {R^q} \to R$ are continuous and locally Lipschitz. The main techniques used are the theory of differential inequalities and Lyapunov functions.References
- Lloyd K. Jackson, Subfunctions and second-order ordinary differential inequalities, Advances in Math. 2 (1968), 307–363. MR 229896, DOI 10.1016/0001-8708(68)90022-4 H. Kneser, Ueber die Lösungen eines Systems gewohnlicher Differentialgleichungen das der Lipschitzschen Bedingung nicht genugt, S.-B. Preuss Akad. Wiss. Phys.-Math. Kl. 1923, 171-174.
- M. A. Krasnosel′skiy, A. I. Perov, A. I. Povolotskiy, and P. P. Zabreiko, Plane vector fields, Academic Press, New York-London, 1966. Translated by Scripta Technica, Ltd. MR 0206922 V. Lakshmikantham and S. Leela, Differential and integral inequalities. Vol. I, Academic Press, New York, 1969.
- A. Lasota and Z. Opial, On the existence and uniqueness of solutions of a boundary value problem for an ordinary second-order differential equation, Colloq. Math. 18 (1967), 1–5. MR 219792, DOI 10.4064/cm-18-1-1-5
- A. I. Perov, A boundary-value problem for a system of two differential equations, Dokl. Akad. Nauk SSSR 144 (1962), 493–496 (Russian). MR 0153900 E. Picard, Sur l’application des méthods d’approximations successives a l’étude de certaines équations différentielles ordinaires, J. Math. 9 (1893), 217-271.
- Paul Waltman, Existence and uniqueness of solutions of boundary value problems for two dimensional systems of nonlinear differential equations, Trans. Amer. Math. Soc. 153 (1971), 223–234. MR 268450, DOI 10.1090/S0002-9947-1971-0268450-0
- Taro Yoshizawa, Stability theory by Liapunov’s second method, Publications of the Mathematical Society of Japan, vol. 9, Mathematical Society of Japan, Tokyo, 1966. MR 0208086
Bibliographic Information
- © Copyright 1973 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 182 (1973), 261-274
- MSC: Primary 34B15
- DOI: https://doi.org/10.1090/S0002-9947-1973-0326043-2
- MathSciNet review: 0326043