On the asymptotic behavior of nonlinear wave equations
HTML articles powered by AMS MathViewer
- by Robert T. Glassey
- Trans. Amer. Math. Soc. 182 (1973), 187-200
- DOI: https://doi.org/10.1090/S0002-9947-1973-0330782-7
- PDF | Request permission
Abstract:
Positive energy solutions of the Cauchy problem for the equation $\square u = {m^2}u + F(u)$ are considered. With $G(u) = \smallint _0^uF(s)ds$, it is proven that $G(u)$ must be nonnegative in order for uniform decay and the existence of asymptotic “free” solutions to hold. When $G(u)$ is nonnegative and satisfies a growth restriction at infinity, the kinetic and potential energies (with m = 0) are shown to be asymptotically equal. In case $F(u)$ has the form $|u{|^{p - 1}}u$, scattering theory is shown to be impossible if $1 < p \leq 1 + 2{n^{ - 1}}\;(n \geq 2)$.References
- R. J. Duffin, Equipartition of energy in wave motion, J. Math. Anal. Appl. 32 (1970), 386–391. MR 269190, DOI 10.1016/0022-247X(70)90304-5
- Avner Friedman, Partial differential equations, Holt, Rinehart and Winston, Inc., New York-Montreal, Que.-London, 1969. MR 0445088
- Jerome A. Goldstein, An asymptotic property of solutions of wave equations, Proc. Amer. Math. Soc. 23 (1969), 359–363. MR 250125, DOI 10.1090/S0002-9939-1969-0250125-1
- Konrad Jörgens, Über die nichtlinearen Wellengleichungen der mathematischen Physik, Math. Ann. 138 (1959), 179–202 (German). MR 144073, DOI 10.1007/BF01342943
- Konrad Jörgens, Das Anfangswertproblem im Grossen für eine Klasse nichtlinearer Wellengleichungen, Math. Z. 77 (1961), 295–308 (German). MR 130462, DOI 10.1007/BF01180181 —, Nonlinear wave equations, Lecture notes, University of Colorado, Boulder, Col., March 1970.
- Peter D. Lax and Ralph S. Phillips, Scattering theory, Pure and Applied Mathematics, Vol. 26, Academic Press, New York-London, 1967. MR 0217440
- Cathleen S. Morawetz and Walter A. Strauss, Decay and scattering of solutions of a nonlinear relativistic wave equation, Comm. Pure Appl. Math. 25 (1972), 1–31. MR 303097, DOI 10.1002/cpa.3160250103
- Eric H. Roffman, Localized solutions of nonlinear wave equations, Bull. Amer. Math. Soc. 76 (1970), 70–71. MR 272326, DOI 10.1090/S0002-9904-1970-12368-0
- Irving Segal, Quantization and dispersion for nonlinear relativistic equations, Mathematical Theory of Elementary Particles (Proc. Conf., Dedham, Mass., 1965) M.I.T. Press, Cambridge, Mass., 1966, pp. 79–108. MR 0217453
- Irving Segal, Dispersion for non-linear relativistic equations. II, Ann. Sci. École Norm. Sup. (4) 1 (1968), 459–497. MR 243788, DOI 10.24033/asens.1170
- Walter A. Strauss, Decay and asymptotics for $cmu=F(u)$, J. Functional Analysis 2 (1968), 409–457. MR 0233062, DOI 10.1016/0022-1236(68)90004-9
- Walter A. Strauss, On weak solutions of semi-linear hyperbolic equations, An. Acad. Brasil. Ci. 42 (1970), 645–651. MR 306715
- Walter Alexander Strauss, The energy method in nonlinear partial differential equations, Notas de Matemática, No. 47, Instituto de Matemática Pura e Aplicada, Conselho Nacional de Pesquisas, Rio de Janeiro, 1969. MR 0273170
Bibliographic Information
- © Copyright 1973 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 182 (1973), 187-200
- MSC: Primary 35L05
- DOI: https://doi.org/10.1090/S0002-9947-1973-0330782-7
- MathSciNet review: 0330782