Limit properties of Poisson kernels of tube domains
HTML articles powered by AMS MathViewer
- by Lawrence J. Dickson
- Trans. Amer. Math. Soc. 182 (1973), 383-401
- DOI: https://doi.org/10.1090/S0002-9947-1973-0330937-1
- PDF | Request permission
Abstract:
If certain local boundary conditions hold near $P \in \partial \Gamma$, the Poisson kernel belonging to a proper cone $\Gamma \subset {{\mathbf {R}}^n}$ converges to a tight $C_0^\ast$ limit as its parameter converges admissibly to P in $\Gamma$. This limit can be identified with a lower-dimensional Poisson kernel. The result always works for polytopic and “rounded” cones; for these, a result on the decrease at infinity is obtained which in fact implies convergence almost everywhere in the appropriate sense of the Poisson integral to certain of its boundary values.References
- S. Bochner, Group invariance of Cauchy’s formula in several variables, Ann. of Math. (2) 45 (1944), 686–707. MR 11131, DOI 10.2307/1969297 L. J. Dickson, Some limit properties of Poisson integrals and holomorphic functions on tube domains, Dissertation, Princeton University, Princeton, N. J., 1971.
- G. H. Hardy and J. E. Littlewood, A maximal theorem with function-theoretic applications, Acta Math. 54 (1930), no. 1, 81–116. MR 1555303, DOI 10.1007/BF02547518
- S. Karlin and L. S. Shapley, Geometry of moment spaces, Mem. Amer. Math. Soc. 12 (1953), 93. MR 59329
- Adam Korányi, The Poisson integral for generalized half-planes and bounded symmetric domains, Ann. of Math. (2) 82 (1965), 332–350. MR 200478, DOI 10.2307/1970645
- E. M. Stein and N. J. Weiss, Convergence of Poisson integrals for bounded symmetric domains, Proc. Nat. Acad. Sci. U.S.A. 60 (1968), 1160–1162. MR 229856, DOI 10.1073/pnas.60.4.1160
- E. M. Stein and N. J. Weiss, On the convergence of Poisson integrals, Trans. Amer. Math. Soc. 140 (1969), 35–54. MR 241685, DOI 10.1090/S0002-9947-1969-0241685-X
Bibliographic Information
- © Copyright 1973 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 182 (1973), 383-401
- MSC: Primary 43A85; Secondary 31B10, 32A25
- DOI: https://doi.org/10.1090/S0002-9947-1973-0330937-1
- MathSciNet review: 0330937