Visitations of ruled sums
HTML articles powered by AMS MathViewer
- by Leonard E. Baum and H. H. Stratton
- Trans. Amer. Math. Soc. 182 (1973), 403-430
- DOI: https://doi.org/10.1090/S0002-9947-1973-0334326-5
- PDF | Request permission
Abstract:
Let $\{ {X_i}\}$ be a sequence of independent identically distributed random variables and for $D \subseteq {I^ + }$ let ${S_D} = {\Sigma _{i \in D}}{X_i}$. A rule $(\;)$ is a mapping ${I^ + } \to {2^{{I^ + }}}:\forall n|(n)| = n$ and ${S_{(\;)}} = \{ {S_{(n)}}\}$ is its associated ruled sum. Ruled sums generalize ordinary sums ${S_n}$. Indeed, all a.e. results for ${S_n}$ can be investigated for ${S_{(n)}}$ frequently requiring different methods and sometimes yielding different conclusions. In a previous paper we studied strong laws of large numbers and the law of the iterated logarithm. In this paper we study infinite visitation. Under suitable hypotheses on the basic distribution function F of the ${X_i}$ we show that, for all rules $(\;),{S_{(n)}}$ visits each integer infinitely often a.e. in the lattice case (or has all points of the real line as accumulation points in the nonlattice case). In fact we obtain a “rate of visitation.” There follows extensions of the Pólya theorem on encounters in the plane and 3-space from random walks to these ruled sums. Some equivalence relations and partial orderings on rules are defined. For normal variables this leads to an extension of the previously mentioned result for ruled sums of the type of the iterated logarithm law.References
- Leonard E. Baum, M. Katz, and H. H. Stratton, Strong laws for ruled sums, Ann. Math. Statist. 42 (1971), 625–629. MR 290427, DOI 10.1214/aoms/1177693412
- Patrick Billingsley, Convergence of probability measures, John Wiley & Sons, Inc., New York-London-Sydney, 1968. MR 0233396
- Leo Breiman, Probability, Addison-Wesley Publishing Co., Reading, Mass.-London-Don Mills, Ont., 1968. MR 0229267
- K. L. Chung and P. Erdös, Probability limit theorems assuming only the first moment. I, Mem. Amer. Math. Soc. 6 (1951), 19. MR 40612
- K. L. Chung and W. H. J. Fuchs, On the distribution of values of sums of random variables, Mem. Amer. Math. Soc. 6 (1951), 12. MR 40610 William Feller, An introduction to probability theory and its applications. Vol. I, 2nd ed., Wiley, New York, 1966. MR 42 #5292; Vol. 2, Wiley, New York, 1966. MR 35 #1048.
- Jean-Pierre Kahane, Some random series of functions, D. C. Heath and Company Raytheon Education Company, Lexington, Mass., 1968. MR 0254888
- Harry Kesten, The limit points of a normalized random walk, Ann. Math. Statist. 41 (1970), 1173–1205. MR 266315, DOI 10.1214/aoms/1177696894
- Simon Kochen and Charles Stone, A note on the Borel-Cantelli lemma, Illinois J. Math. 8 (1964), 248–251. MR 161355
- B. V. Gnedenko and A. N. Kolmogorov, Limit distributions for sums of independent random variables, Revised edition, Addison-Wesley Publishing Co., Reading, Mass.-London-Don Mills, Ont., 1968. Translated from the Russian, annotated, and revised by K. L. Chung; With appendices by J. L. Doob and P. L. Hsu. MR 0233400
- Melvin L. Katz, The probability in the tail of a distribution, Ann. Math. Statist. 34 (1963), 312–318. MR 144369, DOI 10.1214/aoms/1177704268
- Michel Loève, Probability theory, 3rd ed., D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto, Ont.-London, 1963. MR 0203748
- Yu. V. Prokhorov and Yu. A. Rozanov, Probability theory: Basic concepts, limit theorems, random processes. , Die Grundlehren der mathematischen Wissenschaften, Band 157, Springer-Verlag, New York-Heidelberg, 1969. Translated from the Russian by K. Krickeberg and H. Urmitzer. MR 0251754, DOI 10.1007/978-3-642-87934-0
- C. Radhakrishna Rao and V. S. Varadarajan, Discrimination of Gaussian processes, Sankhyā Ser. A 25 (1963), 303–330. MR 183090
- P. Bártfai and P. Révész, On a zero-one law, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 7 (1967), 43–47. MR 208645, DOI 10.1007/BF00532096
- Herbert Robbins, On the equidistribution of sums of independent random variables, Proc. Amer. Math. Soc. 4 (1953), 786–799. MR 56869, DOI 10.1090/S0002-9939-1953-0056869-7
- L. A. Shepp, The singularity of Gaussian measures in function space, Proc. Nat. Acad. Sci. U.S.A. 52 (1964), 430–433. MR 169284, DOI 10.1073/pnas.52.2.430
- David Slepian, The one-sided barrier problem for Gaussian noise, Bell System Tech. J. 41 (1962), 463–501. MR 133183, DOI 10.1002/j.1538-7305.1962.tb02419.x
- Charles Stone, A local limit theorem for nonlattice multi-dimensional distribution functions, Ann. Math. Statist. 36 (1965), 546–551. MR 175166, DOI 10.1214/aoms/1177700165
- Hermann Weyl, Über die Gleichverteilung von Zahlen mod. Eins, Math. Ann. 77 (1916), no. 3, 313–352 (German). MR 1511862, DOI 10.1007/BF01475864
Bibliographic Information
- © Copyright 1973 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 182 (1973), 403-430
- MSC: Primary 60G50; Secondary 60F20
- DOI: https://doi.org/10.1090/S0002-9947-1973-0334326-5
- MathSciNet review: 0334326