Existence of sum and product integrals
HTML articles powered by AMS MathViewer
- by Jon C. Helton
- Trans. Amer. Math. Soc. 182 (1973), 165-174
- DOI: https://doi.org/10.1090/S0002-9947-1973-0352368-0
- PDF | Request permission
Abstract:
Functions are from $R \times R$ to R, where R represents the set of real numbers. If c is a number and either (1) $\smallint _a^b{G^2}$ exists and $\smallint _a^bG$ exists, (2) $\smallint _a^bG$ exists and $_a{{\mathbf {\Pi }}^b}(1 + G)$ exists and is not zero or (3) each of $_a{{\mathbf {\Pi }}^b}(1 + G)$ and $_a{\Pi ^b}(1 - G)$ exists and is not zero, then $\smallint _a^bcG$ exists, $\smallint _a^b|cG - \smallint cG| = 0{,_x}{{\mathbf {\Pi }}^y}(1 + cG)$ exists for $a \leq x < y \leq b$ and $\smallint _a^b|1 + cG - {\mathbf {\Pi }}(1 + cG)| = 0$. Furthermore, if H is a function such that ${\lim _{x \to {p^ - }}}H(x,p),{\lim _{x \to {p^ + }}}H(p,x),{\lim _{x,y \to {p^ - }}}H(x,y)$ and ${\lim _{x,y \to {p^ + }}}H(x,y)$ exist for each $p \in [a,b],n \geq 2$ is an integer, and G satisfies either (1), (2) or (3) of the above, then $\smallint _a^bH{G^n}$ exists, $\smallint _a^b|H{G^n} - \smallint H{G^n}| = 0{,_x}{{\mathbf {\Pi }}^y}(1 + H{G^n})$ exists for $a \leq x < y \leq b$ and $\smallint _a^b|1 + H{G^n} - {\mathbf {\Pi }}(1 + H{G^n})| = 0$.References
- William D. L. Appling, Interval functions and real Hilbert spaces, Rend. Circ. Mat. Palermo (2) 11 (1962), 154–156. MR 154081, DOI 10.1007/BF02843951
- W. P. Davis and J. A. Chatfield, Concerning product integrals and exponentials, Proc. Amer. Math. Soc. 25 (1970), 743–747. MR 267068, DOI 10.1090/S0002-9939-1970-0267068-8
- Burrell W. Helton, Integral equations and product integrals, Pacific J. Math. 16 (1966), 297–322. MR 188731, DOI 10.2140/pjm.1966.16.297
- Burrell W. Helton, A product integral representation for a Gronwall inequality, Proc. Amer. Math. Soc. 23 (1969), 493–500. MR 248310, DOI 10.1090/S0002-9939-1969-0248310-8
- Jon C. Helton, Existence theorems for sum and product integrals, Proc. Amer. Math. Soc. 36 (1972), 407–413. MR 313459, DOI 10.1090/S0002-9939-1972-0313459-8
- Jon C. Helton, Some interdependencies of sum and product integrals, Proc. Amer. Math. Soc. 37 (1973), 201–206. MR 308340, DOI 10.1090/S0002-9939-1973-0308340-5 —, Product integrals, bounds and inverses, Texas J. Sci. 25 (1973) (to appear).
- A. Kolmogoroff, Untersuchungen über denIntegralbegriff, Math. Ann. 103 (1930), no. 1, 654–696 (German). MR 1512641, DOI 10.1007/BF01455714
Bibliographic Information
- © Copyright 1973 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 182 (1973), 165-174
- MSC: Primary 26A39
- DOI: https://doi.org/10.1090/S0002-9947-1973-0352368-0
- MathSciNet review: 0352368