Almost maximal integral domains and finitely generated modules
HTML articles powered by AMS MathViewer
- by Willy Brandal
- Trans. Amer. Math. Soc. 183 (1973), 203-222
- DOI: https://doi.org/10.1090/S0002-9947-1973-0325609-3
- PDF | Request permission
Abstract:
We present a class of integral domains with all finitely generated modules isomorphic to direct sums of cyclic modules. This class contains all previously known examples (i.e., the principal ideal domains and the almost maximal valuation rings) and, by an example, at least one more domain. The class consists of the integral domains satisfying (1) every finitely generated ideal is principal (obviously a necessary condition) and (2) every proper homomorphic image of the domain is linearly compact. We call an integral domain almost maximal if it satisfies (2). This is one of eleven conditions which, for valuation rings, is equivalent of E. Matlis’ “almost maximal.” An arbitrary integral domain R is almost maximal if and only if it is h-local and ${R_M}$ is almost maximal for every maximal ideal M of R. Finally, equivalent conditions for a Prüfer domain to be almost maximal are studied, and in the process some conjectures of E. Matlis are answered.References
- N. Bourbaki, Éléments de mathématique. Fasc. XXX. Algèbre commutative. Chapitre 5: Entiers. Chapitre 6: Valuations, Actualités Scientifiques et Industrielles [Current Scientific and Industrial Topics], No. 1308, Hermann, Paris, 1964 (French). MR 0194450
- Henri Cartan and Samuel Eilenberg, Homological algebra, Princeton University Press, Princeton, N. J., 1956. MR 0077480
- D. T. Gill, Almost maximal valuation rings, J. London Math. Soc. (2) 4 (1971), 140–146. MR 292822, DOI 10.1112/jlms/s2-4.1.140
- Yukitoshi Hinohara, Projective modules over semilocal rings, Tohoku Math. J. (2) 14 (1962), 205–211. MR 180580, DOI 10.2748/tmj/1178244175
- Irving Kaplansky, Elementary divisors and modules, Trans. Amer. Math. Soc. 66 (1949), 464–491. MR 31470, DOI 10.1090/S0002-9947-1949-0031470-3
- Irving Kaplansky, Infinite abelian groups, University of Michigan Press, Ann Arbor, 1954. MR 0065561
- G. B. Klatt and L. S. Levy, Pre-self-injective rings, Trans. Amer. Math. Soc. 137 (1969), 407–419. MR 236165, DOI 10.1090/S0002-9947-1969-0236165-1
- Horst Leptin, Linear kompakte Moduln und Ringe, Math. Z. 62 (1955), 241–267 (German). MR 69811, DOI 10.1007/BF01180634
- Horst Leptin, Linear kompakte Moduln und Ringe. II, Math. Z. 66 (1957), 289–327 (German). MR 86798, DOI 10.1007/BF01186614
- Eben Matlis, Injective modules over Prüfer rings, Nagoya Math. J. 15 (1959), 57–69. MR 109840, DOI 10.1017/S002776300000667X
- Eben Matlis, Cotorsion modules, Mem. Amer. Math. Soc. 49 (1964), 66. MR 178025
- Eben Matlis, Decomposable modules, Trans. Amer. Math. Soc. 125 (1966), 147–179. MR 201465, DOI 10.1090/S0002-9947-1966-0201465-5
- Eben Matlis, Rings of type I, J. Algebra 23 (1972), 76–87. MR 306185, DOI 10.1016/0021-8693(72)90046-4
- Eben Matlis, Rings with property $D$, Trans. Amer. Math. Soc. 170 (1972), 437–446. MR 306186, DOI 10.1090/S0002-9947-1972-0306186-9
- O. F. G. Schilling, The Theory of Valuations, Mathematical Surveys, No. 4, American Mathematical Society, New York, N. Y., 1950. MR 0043776, DOI 10.1090/surv/004
- R. B. Warfield Jr., Purity and algebraic compactness for modules, Pacific J. Math. 28 (1969), 699–719. MR 242885, DOI 10.2140/pjm.1969.28.699
- R. B. Warfield Jr., Decomposability of finitely presented modules, Proc. Amer. Math. Soc. 25 (1970), 167–172. MR 254030, DOI 10.1090/S0002-9939-1970-0254030-4
- Seth Warner, Linearly compact rings and modules, Math. Ann. 197 (1972), 29–43. MR 297822, DOI 10.1007/BF01427950
- Oscar Zariski and Pierre Samuel, Commutative algebra. Vol. II, The University Series in Higher Mathematics, D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto-London-New York, 1960. MR 0120249, DOI 10.1007/978-3-662-29244-0
- Daniel Zelinsky, Linearly compact modules and rings, Amer. J. Math. 75 (1953), 79–90. MR 51832, DOI 10.2307/2372616
Bibliographic Information
- © Copyright 1973 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 183 (1973), 203-222
- MSC: Primary 13G05
- DOI: https://doi.org/10.1090/S0002-9947-1973-0325609-3
- MathSciNet review: 0325609