Schur multipliers of finite simple groups of Lie type
HTML articles powered by AMS MathViewer
- by Robert L. Griess
- Trans. Amer. Math. Soc. 183 (1973), 355-421
- DOI: https://doi.org/10.1090/S0002-9947-1973-0338148-0
- PDF | Request permission
Abstract:
This paper presents results on Schur multipliers of finite groups of Lie type. Specifically, let p denote the characteristic of the finite field over which such a group is defined. We determine the p-part of the multiplier of the Chevalley groups ${G_2}(4),{G_2}(3)$ and ${F_4}(2)$ the Steinberg variations; the Ree groups of type ${F_4}$ and the Tits simple group $^2{F_4}(2)’$.References
- J. L. Alperin and Daniel Gorenstein, The multiplicators of certain simple groups, Proc. Amer. Math. Soc. 17 (1966), 515–519. MR 193141, DOI 10.1090/S0002-9939-1966-0193141-8
- N. Bourbaki, Éléments de mathématique. Fasc. XXXIV. Groupes et algèbres de Lie. Chapitre IV: Groupes de Coxeter et systèmes de Tits. Chapitre V: Groupes engendrés par des réflexions. Chapitre VI: systèmes de racines, Actualités Scientifiques et Industrielles [Current Scientific and Industrial Topics], No. 1337, Hermann, Paris, 1968 (French). MR 0240238
- Henri Cartan and Samuel Eilenberg, Homological algebra, Princeton University Press, Princeton, N. J., 1956. MR 0077480
- R. W. Carter, Simple groups and simple Lie algebras, J. London Math. Soc. 40 (1965), 193–240. MR 174655, DOI 10.1112/jlms/s1-40.1.193
- C. Chevalley, Sur certains groupes simples, Tohoku Math. J. (2) 7 (1955), 14–66 (French). MR 73602, DOI 10.2748/tmj/1178245104
- Bernd Fischer, Finite groups generated by $3$-transpositions. I, Invent. Math. 13 (1971), 232–246. MR 294487, DOI 10.1007/BF01404633
- Daniel Gorenstein, Finite groups, Harper & Row, Publishers, New York-London, 1968. MR 0231903
- Robert L. Griess Jr., Schur multipliers of the known finite simple groups, Bull. Amer. Math. Soc. 78 (1972), 68–71. MR 289635, DOI 10.1090/S0002-9904-1972-12855-6
- Robert L. Griess Jr., Schur multipliers of some sporadic simple groups, J. Algebra 32 (1974), no. 3, 445–466. MR 382426, DOI 10.1016/0021-8693(74)90151-3
- B. Huppert, Endliche Gruppen. I, Die Grundlehren der mathematischen Wissenschaften, Band 134, Springer-Verlag, Berlin-New York, 1967 (German). MR 0224703, DOI 10.1007/978-3-642-64981-3 J. Lindsey, On a six dimensional projective representation of $PSU(4,3)$ (to appear).
- Rimhak Ree, A family of simple groups associated with the simple Lie algebra of type $(F_{4})$, Amer. J. Math. 83 (1961), 401–420. MR 132781, DOI 10.2307/2372886 I. Schur, Über die Darstellung der endlichen Gruppen durch gebrochene lineare Substitutionen, J. Reine Angew. Math. 127 (1904), 20-50; ibid. 132 (1907), 85-137. —, Über die Darstellung der symmetrischen und der alternienden Gruppe durch gebrochene lineare Substitutionen, J. Reine Angew. Math. 139 (1911), 155-250.
- Robert Steinberg, Générateurs, relations et revêtements de groupes algébriques, Colloq. Théorie des Groupes Algébriques (Bruxelles, 1962) Librairie Universitaire, Louvain; Gauthier-Villars, Paris, 1962, pp. 113–127 (French). MR 0153677
- Robert Steinberg, Representations of algebraic groups, Nagoya Math. J. 22 (1963), 33–56. MR 155937, DOI 10.1017/S0027763000011016
- Robert Steinberg, Variations on a theme of Chevalley, Pacific J. Math. 9 (1959), 875–891. MR 109191, DOI 10.2140/pjm.1959.9.875 —, Lectures on Chevalley groups, Yale University Notes, New Haven, Conn., 1967.
- J. Tits, Algebraic and abstract simple groups, Ann. of Math. (2) 80 (1964), 313–329. MR 164968, DOI 10.2307/1970394
- John McKay and David Wales, The multipliers of the simple groups of order $604,800$ and $50,232,960$, J. Algebra 17 (1971), 262–272. MR 274577, DOI 10.1016/0021-8693(71)90033-0
- H. N. Ward, On the triviality of primary parts of the Schur multiplier, J. Algebra 10 (1968), 377–382. MR 232858, DOI 10.1016/0021-8693(68)90087-2
- Keijiro Yamazaki, On projective representations and ring extensions of finite groups, J. Fac. Sci. Univ. Tokyo Sect. I 10 (1964), 147–195 (1964). MR 180608
Bibliographic Information
- © Copyright 1973 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 183 (1973), 355-421
- MSC: Primary 20C25
- DOI: https://doi.org/10.1090/S0002-9947-1973-0338148-0
- MathSciNet review: 0338148