On factorized groups
HTML articles powered by AMS MathViewer
- by David C. Buchthal
- Trans. Amer. Math. Soc. 183 (1973), 423-430
- DOI: https://doi.org/10.1090/S0002-9947-1973-0338155-8
- PDF | Request permission
Abstract:
The effect on a finite group G by the imposition of the condition that G is factorized by each of its maximal subgroups has been studied by Huppert, Deskins, Kegel, and others. In this paper, the effect on G brought about by the condition that G is factorized by a normalizer of a Sylow p-subgroup for each $p \in \pi (G)$ is studied. Through an extension of a classical theorem of Burnside, it is shown that certain results in the case where the factors are maximal subgroups continue to hold under the new conditions. Definite results are obtained in the case where the supplements of the Sylow normalizers are cyclic groups of prime power order or are abelian Hall subgroups of G.References
- Reinhold Baer, Classes of finite groups and their properties, Illinois J. Math. 1 (1957), 115–187. MR 87655
- J. C. Beidleman and A. E. Spencer, The normal index of maximal subgroups in finite groups, Illinois J. Math. 16 (1972), 95–101. MR 294480, DOI 10.1215/ijm/1256052386
- S. A. Čunihin, Podgruppy konechnykh grupp, Izdat. “Nauka i Tehnika”, Minsk, 1964 (Russian). MR 0212082
- W. E. Deskins, On maximal subgroups, Proc. Sympos. Pure Math., Vol. 1, American Mathematical Society, Providence, R.I., 1959, pp. 100–104. MR 0125157
- Walter Feit and John G. Thompson, Solvability of groups of odd order, Pacific J. Math. 13 (1963), 775–1029. MR 166261
- Marshall Hall Jr., The theory of groups, The Macmillan Company, New York, N.Y., 1959. MR 0103215
- Marshall Hall Jr., On the number of Sylow subgroups in a finite group, J. Algebra 7 (1967), 363–371. MR 222159, DOI 10.1016/0021-8693(67)90076-2 P. Hall, A characteristic property of solvable groups, J. London Math. Soc. 12 (1937), 188-200.
- B. Huppert, Endliche Gruppen. I, Die Grundlehren der mathematischen Wissenschaften, Band 134, Springer-Verlag, Berlin-New York, 1967 (German). MR 0224703, DOI 10.1007/978-3-642-64981-3
- Noboru Itô, On the factorizations of the linear fractional group $LF(2,p^n)$, Acta Sci. Math. (Szeged) 15 (1953), 79–84. MR 57885
- Zvonimir Janko, A new finite simple group with abelian Sylow $2$-subgroups and its characterization, J. Algebra 3 (1966), 147–186. MR 193138, DOI 10.1016/0021-8693(66)90010-X
- Zvonimir Janko and John G. Thompson, On a class of finite simple groups of Ree, J. Algebra 4 (1966), 274–292. MR 201504, DOI 10.1016/0021-8693(66)90041-X
- Otto H. Kegel, On Huppert’s characterization of finite supersoluble groups, Proc. Internat. Conf. Theory of Groups (Canberra, 1965) Gordon and Breach, New York, 1967, pp. 209–215. MR 0217183
- Larry R. Nyhoff, The influence on a finite group of the cofactors and subcofactors of its subgroups, Trans. Amer. Math. Soc. 154 (1971), 459–491. MR 284495, DOI 10.1090/S0002-9947-1971-0284495-9
- Oystein Ore, Contributions to the theory of groups of finite order, Duke Math. J. 5 (1939), no. 2, 431–460. MR 1546136, DOI 10.1215/S0012-7094-39-00537-5
- David Perin, Finite groups with nicely supplemented Sylow normalizers, Trans. Amer. Math. Soc. 183 (1973), 431–435. MR 393219, DOI 10.1090/S0002-9947-1973-0393219-8
- J. F. Ritt, On algebraic functions which can be expressed in terms of radicals, Trans. Amer. Math. Soc. 24 (1922), no. 1, 21–30. MR 1501211, DOI 10.1090/S0002-9947-1922-1501211-X
- Eugene Schenkman, Group theory, D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto, Ont.-London, 1965. MR 0197537
- W. R. Scott, Group theory, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1964. MR 0167513
- J. Szép and L. Rédei, On factorisable groups, Acta Univ. Szeged. Sect. Sci. Math. 13 (1950), 235–238. MR 48433
- Harold N. Ward, On Ree’s series of simple groups, Trans. Amer. Math. Soc. 121 (1966), 62–89. MR 197587, DOI 10.1090/S0002-9947-1966-0197587-8
- John H. Walter, Finite groups with abelian Sylow $2$-subgroups of order $8$, Invent. Math. 2 (1967), 332–376. MR 218445, DOI 10.1007/BF01428899
- John H. Walter, The characterization of finite groups with abelian Sylow $2$-subgroups, Ann. of Math. (2) 89 (1969), 405–514. MR 249504, DOI 10.2307/1970648
Bibliographic Information
- © Copyright 1973 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 183 (1973), 423-430
- MSC: Primary 20D10
- DOI: https://doi.org/10.1090/S0002-9947-1973-0338155-8
- MathSciNet review: 0338155