Nilpotent-by-finite groups with isomorphic finite quotients
HTML articles powered by AMS MathViewer
- by P. F. Pickel
- Trans. Amer. Math. Soc. 183 (1973), 313-325
- DOI: https://doi.org/10.1090/S0002-9947-1973-0384940-6
- PDF | Request permission
Abstract:
Let $\mathcal {F}(G)$ denote the set of isomorphism classes of finite homomorphic images of a group G. We say that groups G and H have isomorphic finite quotients if $\mathcal {F}(G) = \mathcal {F}(H)$. Let $\mathcal {H}$ denote the class of finite extensions of finitely generated nilpotent groups. In this paper we show that if G is in $\mathcal {H}$, then the groups H in $\mathcal {H}$ for which $\mathcal {F}(G) = \mathcal {F}(H)$ lie in only finitely many isomorphism classes.References
- Louis Auslander, On a problem of Philip Hall, Ann. of Math. (2) 86 (1967), 112–116. MR 218454, DOI 10.2307/1970362
- Louis Auslander and Gilbert Baumslag, Automorphism groups of finitely generated nilpotent groups, Bull. Amer. Math. Soc. 73 (1967), 716–717. MR 217168, DOI 10.1090/S0002-9904-1967-11841-X
- Gilbert Baumslag, Lecture notes on nilpotent groups, Regional Conference Series in Mathematics, No. 2, American Mathematical Society, Providence, R.I., 1971. MR 0283082
- Armand Borel, Linear algebraic groups, W. A. Benjamin, Inc., New York-Amsterdam, 1969. Notes taken by Hyman Bass. MR 0251042
- Armand Borel, Some finiteness properties of adele groups over number fields, Inst. Hautes Études Sci. Publ. Math. 16 (1963), 5–30. MR 202718, DOI 10.1007/BF02684289
- A. Borel and J.-P. Serre, Théorèmes de finitude en cohomologie galoisienne, Comment. Math. Helv. 39 (1964), 111–164 (French). MR 181643, DOI 10.1007/BF02566948
- Robert C. Brigham, On the isomorphism problem for just-infinite groups, Comm. Pure Appl. Math. 24 (1971), 789–796. MR 288179, DOI 10.1002/cpa.3160240605
- Joan Landman Dyer, On the isomorphism problem for polycyclic groups, Math. Z. 112 (1969), 145–153. MR 252490, DOI 10.1007/BF01115037 E. Formanek, Matrix techniques in polycyclic groups, Thesis, Rice University, Houston, Tex., 1970. P. Hall, Nilpotent groups, Canadian Mathematical Congress, Summer Seminar, University of Alberta, 1957.
- K. A. Hirsch, On infinite soluble groups. III, Proc. London Math. Soc. (2) 49 (1946), 184–194. MR 17281, DOI 10.1112/plms/s2-49.3.184
- A. I. Mal′cev, On a class of homogeneous spaces, Izv. Akad. Nauk SSSR Ser. Mat. 13 (1949), 9–32 (Russian). MR 0028842
- Calvin C. Moore, Decomposition of unitary representations defined by discrete subgroups of nilpotent groups, Ann. of Math. (2) 82 (1965), 146–182. MR 181701, DOI 10.2307/1970567
- P. F. Pickel, Finitely generated nilpotent groups with isomorphic finite quotients, Trans. Amer. Math. Soc. 160 (1971), 327–341. MR 291287, DOI 10.1090/S0002-9947-1971-0291287-3
- V. N. Remeslennikov, Conjugacy of subgroups in nilpotent groups, Algebra i Logika Sem. 6 (1967), no. 2, 61–76 (Russian, with English summary). MR 0218459
- W. R. Scott, Group theory, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1964. MR 0167513
- Edwin Weiss, Cohomology of groups, Pure and Applied Mathematics, Vol. 34, Academic Press, New York-London, 1969. MR 0263900
Bibliographic Information
- © Copyright 1973 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 183 (1973), 313-325
- MSC: Primary 20E99
- DOI: https://doi.org/10.1090/S0002-9947-1973-0384940-6
- MathSciNet review: 0384940