Finite groups with nicely supplemented Sylow normalizers
HTML articles powered by AMS MathViewer
- by David Perin
- Trans. Amer. Math. Soc. 183 (1973), 431-435
- DOI: https://doi.org/10.1090/S0002-9947-1973-0393219-8
- PDF | Request permission
Abstract:
This paper considers finite groups G whose Sylow normalizers are supplemented by groups D having a cyclic Hall $2’$-subgroup. G is solvable and all odd order composition factors of G are cyclic. If $S \in {\text {Syl}_2}(D)$ is cyclic, dihedral, semidihedral, or generalized quaternion, then G is almost super-solvable.References
- David C. Buchthal, On factorized groups, Trans. Amer. Math. Soc. 183 (1973), 423–430. MR 338155, DOI 10.1090/S0002-9947-1973-0338155-8
- W. Burnside, Theory of groups of finite order, Dover Publications, Inc., New York, 1955. 2d ed. MR 0069818
- Daniel Gorenstein, Finite groups, Harper & Row, Publishers, New York-London, 1968. MR 0231903
- B. Huppert, Endliche Gruppen. I, Die Grundlehren der mathematischen Wissenschaften, Band 134, Springer-Verlag, Berlin-New York, 1967 (German). MR 0224703, DOI 10.1007/978-3-642-64981-3
- William M. Kantor and Gary M. Seitz, Some results on $2$-transitive groups, Invent. Math. 13 (1971), 125–142. MR 316566, DOI 10.1007/BF01390097 M. O’Nan, Illinois J. Math. (to appear).
- Michio Suzuki, Finite groups of even order in which Sylow 2-groups are independent, Ann. of Math. (2) 80 (1964), 58–77. MR 162841, DOI 10.2307/1970491
- Helmut Wielandt, Finite permutation groups, Academic Press, New York-London, 1964. Translated from the German by R. Bercov. MR 0183775
Bibliographic Information
- © Copyright 1973 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 183 (1973), 431-435
- MSC: Primary 20D10
- DOI: https://doi.org/10.1090/S0002-9947-1973-0393219-8
- MathSciNet review: 0393219