Lattice points and Lie groups. II
HTML articles powered by AMS MathViewer
- by Robert S. Cahn
- Trans. Amer. Math. Soc. 183 (1973), 131-137
- DOI: https://doi.org/10.1090/S0002-9947-73-99952-2
- PDF | Request permission
Abstract:
Let $C$ be the Casimir operator on a compact, simple, simply connected Lie group $G$ of dimension $n$. The number of eigenvalues of $C$, counted with their multiplicities, of absolute value less than or equal to $t$ is asymptotic to $k t^{n/2}$, $k$ a constant. This paper shows the error of this estimate to be $O({t^{2b + a(a - 1)/(a + 1)}})$; where $a$ = rank of $G$ and $b = 1/2 (n - a)$.References
- Richard Beals, Global asymptotic estimates for elliptic spectral functions and eigenvalues, Bull. Amer. Math. Soc. 74 (1968), 358–360. MR 221120, DOI 10.1090/S0002-9904-1968-11954-8
- Richard Beals, On eigenvalue distributions for elliptic operators without smooth coefficients, Bull. Amer. Math. Soc. 72 (1966), 701–705. MR 196257, DOI 10.1090/S0002-9904-1966-11562-8
- C. S. Herz, On the number of lattice points in a convex set, Amer. J. Math. 84 (1962), 126–133. MR 139583, DOI 10.2307/2372808
- Lars Hörmander, The spectral function of an elliptic operator, Acta Math. 121 (1968), 193–218. MR 609014, DOI 10.1007/BF02391913
- Nathan Jacobson, Lie algebras, Interscience Tracts in Pure and Applied Mathematics, No. 10, Interscience Publishers (a division of John Wiley & Sons, Inc.), New York-London, 1962. MR 0143793
- Walter Littman, Fourier transforms of surface-carried measures and differentiability of surface averages, Bull. Amer. Math. Soc. 69 (1963), 766–770. MR 155146, DOI 10.1090/S0002-9904-1963-11025-3
- Burton Randol, A lattice-point problem, Trans. Amer. Math. Soc. 121 (1966), 257–268. MR 201407, DOI 10.1090/S0002-9947-1966-0201407-2
- Jean-Pierre Serre, Algèbres de Lie semi-simples complexes, W. A. Benjamin, Inc., New York-Amsterdam, 1966 (French). MR 0215886
Bibliographic Information
- © Copyright 1973 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 183 (1973), 131-137
- MSC: Primary 22E45
- DOI: https://doi.org/10.1090/S0002-9947-73-99952-2