The commutant of analytic Toeplitz operators
HTML articles powered by AMS MathViewer
- by James A. Deddens and Tin Kin Wong
- Trans. Amer. Math. Soc. 184 (1973), 261-273
- DOI: https://doi.org/10.1090/S0002-9947-1973-0324467-0
- PDF | Request permission
Abstract:
In this paper we study the commutant of an analytic Toeplitz operator. For $\phi \;\;{H^\infty }$, let $\phi = \chi F$ be its inner-outer factorization. Our main result is that if there exists $\lambda \;\epsilon \;{\text {C}}$ such that X factors as $\chi = {\chi _1}{\chi _2} \cdots {\chi _n}$, each ${\chi _i}$ an inner function, and if $F - \lambda$ is divisible by each ${\chi _i}$, then $\{ {T_\phi }\} β = \{ {T_\chi }\} β \cap \{ {T_F}\} β$. The key step in the proof is Lemma 2, which is a curious result about nilpotent operators. One corollary of our main result is that if $\chi (z) = {z^n},n \geq 1$, then $\{ {T_\phi }\} β = \{ {T_\chi }\} β \cap \{ {T_F}\} β$, another is that if $\phi \;\epsilon {H^\infty }$ is univalent then $\{ {T_\phi }\} β = \{ {T_z}\} β$. We are also able to prove that if the inner factor of $\phi$ is $\chi (z) = {z^n},n \geq 1$, then $\{ {T_\phi }\} β = \{ {T_{{z^s}}}\} β$ where s is a positive integer maximal with respect to the property that ${z^n}$ and $F(z)$ are both functions of ${z^s}$. We conclude by raising six questions.References
- J. Ball, Work on a conjecture of Nordgren (preprint).
- Arlen Brown, On a class of operators, Proc. Amer. Math. Soc. 4 (1953), 723β728. MR 59483, DOI 10.1090/S0002-9939-1953-0059483-2
- Arlen Brown and P. R. Halmos, Algebraic properties of Toeplitz operators, J. Reine Angew. Math. 213 (1963/64), 89β102. MR 160136, DOI 10.1007/978-1-4613-8208-9_{1}9 E. R. Berkson, L. A. Rubel and J. P. Williams, Totally hyponormal operators and analytic functions, Notices Amer. Math. Soc. 19 (1972), A393. Abstract #693-B11.
- Ronald G. Douglas, Banach algebra techniques in operator theory, Pure and Applied Mathematics, Vol. 49, Academic Press, New York-London, 1972. MR 0361893
- Peter L. Duren, Theory of $H^{p}$ spaces, Pure and Applied Mathematics, Vol. 38, Academic Press, New York-London, 1970. MR 0268655
- Peter A. Fillmore, Notes on operator theory, Van Nostrand Reinhold Mathematical Studies, No. 30, Van Nostrand Reinhold Co., New York-London-Melbourne, 1970. MR 0257765
- P. R. Halmos, Capacity in Banach algebras, Indiana Univ. Math. J. 20 (1970/71), 855β863. MR 268672, DOI 10.1512/iumj.1971.20.20067
- Philip Hartman and Aurel Wintner, On the spectra of Toeplitzβs matrices, Amer. J. Math. 72 (1950), 359β366. MR 36936, DOI 10.2307/2372039
- Kenneth Hoffman, Banach spaces of analytic functions, Prentice-Hall Series in Modern Analysis, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1962. MR 0133008
- Eric A. Nordgren, Reducing subspaces of analytic Toeplitz operators, Duke Math. J. 34 (1967), 175β181. MR 216321
- D. Sarason, Invariant subspaces and unstarred operator algebras, Pacific J. Math. 17 (1966), 511β517. MR 192365, DOI 10.2140/pjm.1966.17.511
- A. L. Shields and L. J. Wallen, The commutants of certain Hilbert space operators, Indiana Univ. Math. J. 20 (1970/71), 777β788. MR 287352, DOI 10.1512/iumj.1971.20.20062
Bibliographic Information
- © Copyright 1973 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 184 (1973), 261-273
- MSC: Primary 47B35
- DOI: https://doi.org/10.1090/S0002-9947-1973-0324467-0
- MathSciNet review: 0324467