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RICHARD B. HOLMES

ABSTRACT.    A study is made of differential properties of the distance func-

tion and the metric projection defined by a closed convex subset of Hubert space.

The former mapping is also considered within the context of more general Banach

spaces.

Introduction. This paper contains a contribution to the study of best approx-

imation out of a closed convex set K belonging to a Hubert space X. As any

such set is a Chebyshev set, there is defined on X a map P„: X —» K which as-

signs to each element of X its best approximation (nearest point) in K. The map

PK is generally called the metric projection of X on K. P„ is well known to be

a nonexpansive map on X. In the present work we shall be concerned with differ-

ential properties of PK, under appropriate smoothness assumptions about the

boundary of K.

By considering such a simple set as a line segment, it is clear that PK may

fail to possess a two-sided directional derivative at certain points in X.   More

surprisingly, J. Kruskal [5] recently constructed a convex subset of R3 whose

associated metric projection failed to have a one-sided directional derivative at

some points of R . On the other hand, due to the aforementioned Lipschitz continu-

ity of   P„,  the classical theorem of Rademacher and Stepanoff [3, p. 216] guar-

antees that PK is almost everywhere (Frechet) differentiable when X is finite

dimensional.   (This observation, incidentally, yields an affirmative answer to the

question of Kruskal at the bottom of p. 697 of [5]-)  However, when X is infinite

dimensional, there is no guarantee that Lipschitzian maps are differentiable (cf.

[8, pp. 91-92]).

The main result to be presented below is (roughly) that if for some x e X the

boundary of K is of class Cp + 1 near P^U), then P„ is of class Cp on a neigh-

borhood of the ray normal to K at PKix) (hence in particular on a neighborhood

of x).   The proof ultimately reduces to an application of the implicit function the-

orem.   We further obtain various properties of the differential DPAx), and in par-
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ticular characterize those cases where this operator is a constant multiple of the

orthogonal projection of X onto the tangent space to K at PR(x).   It turns out,

for example, that DPKix) equals this orthogonal projection exactly when PKix)

is a flat point of K (definition below).

The two sections containing the aforementioned results are preceded by two

other sections of a preliminary nature.   The first of these collects and summarizes

generally known facts about approximation in Hilbert space.  The second is de-

voted to a discussion of what the assertion "the boundary of K is of class C*

near y" should mean.  Two natural definitions are given, one intrinsic and one

extrinsic, and shown to be equivalent.

Under the hypothesis of the main result indicated above, namely that the

boundary of K be of class Ci>+   near PKix), it also follows that the function

"distance to K" is of class C">+   on a neighborhood of x.  Now it is known

(cf. § 1 below) that this distance function is always of class C , regardless of

the boundary behavior of K.   We extend this result in the Appendix to other Banach

spaces, provided they are endowed with a differentiable norm; thus it is seen that

a quadratic norm is not essential for smoothness of the distance function.

1.   Preliminaries.   Let K be a closed convex subset of the real Hilbert space

X.   We shall assume that K contains a core point relative to its closed affine

hull Y, so that after a translation, we may suppose that K absorbs this hull.

Of course such an assumption entails no loss of generality when X is finite di-

mensional. Now, letting Py be the orthogonal projection of X on  Y, we have

PK = (PK|Y)°Py.

Since our interest is in smoothness properties of PR, and since  Py is a bounded

linear (hence C   ) mapping, we may as well assume that X = Y.

We now introduce for consideration several convex functions on X:

>Kw.{ 0> !
* l+oo,i

if x e K,

if x 4 K;

dKix) = distance from x to K;       eK = lAdKi • ) ;

:>=M||.||2;    ifrK = w-eK;    pKix) = inf |r > 0: x £ tK\.w--

The first and last of these functions are called respectively the indicator and the

gauge of K.

Our first observation is that the functions dK and eR are of class C1 on the

open set X\K (all derivatives are to be understood in the Frechet sense, unless

otherwise noted).   This fact seems to have first been established by Moreau
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[6, p. 286], for the function eK, as a special case of the differentiability of func-

tions of the form f <Bw, the inf-convolution of a convex function / with w (in the

present case we have eK= 8K © w).   A direct proof of the differentiability of eR,

based on Moreau's argument, also appears in [4, p. 64].   The formulas for the

respective gradients which finally emerge are

(1.1) VeK = /-PK,       WK = sgn o il - PK),

where sgn ix) m */||*||> x ¿ 8.   The first formula shows that eK is actually of

class C    on all of X.

We note that the smoothness of the distance function dK does not depend on

any special boundary behavior of K; convexity alone is adequate for first order

smoothness (but not, as we have seen, for higher order smoothness).   We show in

the Appendix that the validity of this fact does not require a Hubert norm: it holds

in any Banach space with a differentiable norm.

From (1.1) we see that

(1.2) PK=V^íí.

using that / = ^w.   Now various authors (e.g., Asplund [1 ], Zarantonello [9]) have

noted that the function xp „ is convex, although again this fact goes back to Mor-

eau's paper [6], where it is shown that every "prox" mapping is the gradient of

a convex function.   Because of its interest and eventual importance to us, we

shall next outline an alternative derivation of the fact that P „ is the gradient

of a convex function; in so doing we shall also record several other facts which

will be needed later.

To best approximate x from K is to solve the ordinary convex program

min \wíx - z): pKíz) < 11.

Recalling the Kuhn-Tucker conditions [7, pp. 42—44], [4, p. 34], we find that there

exists a number A> 0 and a subgradient cp edpKÍPKix)) such that

(1.3) Xcp = S/wix - PKix)) = x - PKix).

Recalling further that the gauge pK is positively homogeneous and subadditive,

we see that

(1.4) 3pKiy) = \cPeX*:cP<pK, cPiy) = pKiy)}.

(Whenever convenient, we are, of course, identifying X and X* in   the usual

manner.)

Next, letting ( *, *)  be the inner product on X,  and fixing y e K,  we utilize

(1.3) and (1.4) to obtain
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Atp(y) < XpKiy)  =»<x - PR(x), y)

< ■V>K(y) < A = -W>(pkW) = <* - PKW' PKW>«

that is,

(1.5) 0 < (x - PKix), PKix) - y),      y e K,

which is the well-known Bourbaki-Cheney-Goldstein inequality for PK(X). This

inequality in turn easily leads to the monotonicity inequality for the metric pro-

jection

(1.6) ||PK(x) - PK(y)||2 < (PK(x) - PK(y), x - y),

Vx, y e X.   Finally, (1.2) and (1.6) together entail the convexity of if)K.  (It is

important to emphasize that there is no circularity in this argument.   That is,

while the usual proofs of (1.1) and hence (1.2) depend on (1.5), our proof of (1.2)

proceeds by treating it as a special case of (A.l), which is established indepen-

dently of (1.5).). We also note the following local growth estimates for ip K:

0 < ifrKix + y)- iffKix) - (PKix), y) < wiy),      Vx» y £ X.

Let us recall that if y is a boundary point of  K (notation: y £ dK), the

normal cone My, K) to  K at y consists of all z e X for which (', z) attains

its maximum value over K at y.   As an immediate consequence of (1.5) we find

for the PK-inverse image of PKix):

(1.7) pk1(pkW) " PKW + N(PKix), K),

Vx e X\K.   The cone defined by (1.7) is just a ray emanating from  PKix) ex-

actly when the latter is a smooth point of K.   Indeed, in this case the ray is

given by |PR(x) + f(x _ P Kix)): t > 0|, as follows from (1.5).

To conclude this section we assemble a few facts concerning the gauge p„.

Under our hypotheses on K this is a continuous convex function on X (con-

tinuity follows from the assumption that K is an absorbing set and the complete-

ness of X which entails that K must then be a neighborhood of the origin).

Lemma 1.   Let y be a boundary point of  K.   Then pAy) > 0.   Suppose also

that pK is differentiable at y.   Then ^/pKiy) 4 d.   Furthermore, the iopen) normal

ray [y + tVpKiy): t > 0| lies exterior to K, and projects via PK onto y.

Proof.   If pKiy) = 0, then K contains the ray [0, oo)y; this together with

the fact that K is a convex neighborhood of the origin implies that y is interior

to K,  a contradiction.   From this in turn, and the relation
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(L8) pK(y) = <y.VpK(y)>

(because pK is positively homogeneous), we see that VpKíy) ¿ d.   Next, com-

bining these two observations with (1.4), we have for any t > 0

l=pK(y)<pK(y) + i||VpK(y)||2

= (y + &PKiy), v>K(y)) < PKiy + &pKiy)).

Finally, the last assertion of the lemma follows from (1.4) and (1.5).

2.   Smoothness of the boundary.   We continue with the assumptions on the

convex set K made in the previous section.   Let y e dK.   A reasonable defini-

tion of the statement "the boundary dK is of class Cp neat y" is that the gauge

pK should be of class Cp on a neighborhood of y.   However, for this definition

to be consistent, we must then resolve the following question.   The set K is not

assumed to have a center of symmetry.   Thus when K was translated to the ori-

gin, so that pK could be defined, we simply picked an arbitrary core point k¡ e

K,  and replaced K by K—k^   Let us call the resulting gauge pv   If some other

core point k2 e K had been chosen instead, leading to another gauge p2, how are

the differentiability properties of p, related to those of p.?   In particular, if

y e dK,  and pl is of class Cp on a neighborhood of y — k., can we assert that

p2 is also of class Cp on a neighborhood of y - k..?

One way to settle such questions is to consider another more intrinsic cri-

terion for C^-smoothness of dK neat y.   Namely, we can ask that some (relative)

neighborhood of y in dK be a C^-submanifold of X,  appropriately modeled on

some hyperplane in X.   More precisely, we shall require that a neighborhood of

y in dK be the range of a C^-embedding defined on an open set in some Hilbert

space, which is also an immersion of a special kind.   The next result gives the

details and establishes the equivalence of the two definitions, thereby in partic-

ular resolving affirmatively the question raised in the preceding paragraph.   Let

us agree in advance that if T is a bounded linear map between Hilbert spaces,

having a closed range, then the corank of T is the codimehsion of its range (with

respect to the target Hilbert space).

Theorem 1.   Let f be a continuous real-valued function on the Hilbert space

X.

(a)  Assume that fixQ) = 1, that VfixQ) 4 Q, and that f is of class Cp

ip>l) on an x ̂ -neighborhood.   Then there is a 6-neighborhood V in a Hilbert

space Z, and a Cp-embedding r: V — X such that firiv)) = 1, rid) = xQ,  and

r iv) is left invertible with corank unity, for every v e V.
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(b)  Assume that f is a gauge, that V, X, and r are defined as in (a), that

r'iv) is left invertible ¡or v £ V, and that corank ir'id)) = 1.   Then f is of class

C*5 orí an x¡.-neighborhood in X.

Before giving the proof, let us remark that if in part (a) it is assumed that X

is finite dimensional, then any Hilbert space Z which meets the conditions of (a)

must have dimension one less than X,  so that the corank condition is automati-

cally fulfilled.

Proof of Theorem 1.   Let Z be the tangent space |V/(xn)| , and define a

function F: Z x RX — RX by

Fiz, a) = fix0 + z + aV/U0)) - 1.

We can apply the implicit function theorem to obtain a 0-neighborhood V C Z and

a Cp-map g: V —♦ R    such that gid) = 0 and

fix0 + v + givWfix0)) = l.

We define r: V —» X by

Av) = x0 + v + giv)VfixQ).

If z £Z and ||z|| = 1, we find for v £ V

\\r\v) - z\\2 = ||2||2 + Ig'(tz) . *|2||V/(*0)||2 > \\z\\2 = 1,

so that r'iv) is left invertible.   Since g'id) = 6, we have r'id) = ¡z, so that

corank (r '(#)) = 1.   That we then have corank (r 'iv)) =1 for v £ V follows from

the next lemma, after possibly replacing V by a smaller ö-neighborhood in Z.

Lemma 2.   Let X and Z be Hilbert spaces, and let A be a continuous map

from an open set V in some Banach space to the space [Z, X] of all bounded

linear maps from Z to X.   Then [v € V: Aiv) is left invertible with corank unity]

is open.

Proof.   It is clear that |tz £ V: Aiv) is left invertible! is open; call it V,.

For v £ Vj, let A iv) be the pseudo-inverse of Aiv), that is,

A\v) = iA*A)-xA*iv)e [x, z].

These maps are surjective and A    is continuous on Vj.   Suppose that there is

vQ £ V x for which corank (A(fn)) = 1.    Then we must find a iz^neighborhood on

which nullity (A (tz)) = 1.   First we show that there is a v„-neighborhood on which

nullity (A \v)) < 1.   If not, there would be a sequence   v   —» vQ   with

nullity (A iv )) > 2, and consequently a sequence fx } of unit vectors in
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ker ÍA + ívJ) O ker ÍA+ívA.)1,.  But then

0 < inf ||A+G,0) • yj = \\ÍA+ívA-A+ívn)) . yj| - 0,

a contradiction.   It remains to show that there is a v„-neighborhood on which

nullity ÍA*ív)) is exactly one.   If not, there would be a sequence vn —* tzn with

A  (tz ) injective.   Let x be a unit vector for which A (iZg)'x = @"  Then

0 = \\A+ivA - «|| > ||A+(t,n) . *|| - \\ÍA\vA-A\vn)) - xfl

> \\A*ivn)-X\\-X - oil) = \\Aiv)\\-1 - oil)

-,\\Aiv0)\\-X>0,

a contradiction,  q.e.d.

At this point the proof of part (a) of Theorem 1 is complete, and we now be-

gin work on part (b).   Let us first note that, in the notation of Lemma 2, if the map

A is of class Cp on V,  and is also left invertible there, then there is a C -choice

of left inverse for A(iz), namely A  iv).  Thus, in addition to the hypotheses of

(b), we may assume that corank (r 'iv)) = 1 throughout V,  and that there is a

Cp~  -left inverse for r 'iv), say 17(17).

Lemma 3.  For v e V, the hyperplane H = riv) + tange ir 'ív)) is the tangent

hyperplane to the surface f~xil) at the point riv), in the sense that

dH ÍÁvJ) = oí\\Áv) - r(tz)H),

as vn —> v.   Consequently,  H    is the unique supporting hyperplane to the convex

body \x eX: fix)< 1} at the point riv).

We next define a C^'^map L: V —♦ [X. Z x Rx] by

Liv): x i-» iqiv) • x,  (x, riv))).

These maps Liv) ate bijective.   To see this we recall that the maps qiv) are sur-

jective and have nullity 1.  We must also recognize that riv) cannot be orthogonal

to ker iqiv)).    Because, if it were, then riv) e tange ir 'iv)), so that / would van-

ish on the tangent hyperplane r(iz) + range (r (tO), in contradiction to Lemma 3.

This argument demonstrates that Liv) is bijective and hence invertible.   Conse-

quently we can define a Cp~  -map g: V —' X by

g(iz) = Liv)- He, 1).

The proof of part (b) of Theorem 1 is now completed by verifying that V/(Ar(v)) =

giv), foi A > 0.   q.e.d.
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3.   Smoothness of the metric projection.   This section contains a proof and

some discussion of the following theorem.

Theorem 2.  Let K be a closed convex body in the Hilbert space X, and sup-

pose that dK is of class Cp*    near the boundary point y.   Then there is a neigh-

borhood of the open normal ray to K at y on which d„ is of class C^*    and P„

is of class C**.

Remark.   We emphasize the restriction to the open normal ray.   It is not pos-

sible to improve the theorem to include the assertion that d„ and/or PK have

the indicated smoothness on a neighborhood of y.   As a simple example, let K

be the unit ball of X,  so that dK is of class C°°.  Here we have

aV =
fo, ||*H < 1,

K   (IWI-i,    1*1 >i.

and

K    jsgn(x),

<1.

> 1.

Clearly, d„ (and consequently  PK) is not of class C    near any unit vector.  More

generally, Zarantonello [9, p. 300] has considered the differentiability of P„ at

boundary points.   He proves that there is a nonlinear "conical differential" for

P„ at the point y e dK,  this differential being in fact the mettic projection onto

the supporting half-space to K at y (under the assumption that K is a convex

body).   Thus, regardless of the smoothness of K near y,   P„ cannot be (Fre'chet)

differentiable at y.   From the proof of Theorem 2 below it follows that dK cannot

be of class C    near y.

Proof of Theorem 2.   As usual we assume that K has been translated so as

to form a neighborhood of the origin.   From § 1, the normal ray at y has the de-

scription |y + tS7pKiy): t > OL We fix an x on this ray (so that y = PKix) by

Lemma 1) and prove that PK is of class Cp near x; in view of (1.1) this will

also establish the assertion about d„.

Letting V be a y-neighborhood on which pK is of class Cp+ , we introduce

the function F: X + V —• X,

(3.1) Fiu, v)=u-v- a'K(iz)sgn(VpK(tz)).

This function is of class Cp on  U x V where  U is any x-neighborhood on which

dK is of class Cp; in turn, this latter condition follows from (1.1) if PK is of
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class CP~X on  U.   Our interest in the function F lies in the fact that

(3.2) Fiu, v) = 0    «    v = PKiu).

Indeed, if v = P Au), then by (1.3) we have a positive A such that \VpAv) = zz

- PKiu); hence

A - dK(u)ASfpK(v%

and Fiu, v) = 0.   Conversely, suppose that Fiu, v) = 0 but v $ K.   Let K   =

[z eX: pAz) <pAv)\.  This is a neighborhood of K and so d„ ,iu) < d Au).  But

we have from (1.3) and Lemma 1 that v = PK,iu), so that the contradiction dK,iu)

= \\w - tz|| = dKiu) results.   Hence v e K and equals  PKiu), so that (3.2) is jus-

tified.

We are going to apply the implicit function theorem to F in the case p = 1.

The case for arbitrary p will follow by induction from (1.1) and the remarks in

the preceding paragraph.   Thus what remains to be shown is that the partial deriv-

ative D,F(x, y) is an automorphism of X, where x and y = P¡Ax) ate fixed.

Making use of the chain rule, we find

(3.3) D2Fix, y) = - / - dKix)D sgn (VpK(y)) ° V2pK(y) = - (/ + T).

The next lemma will reveal the structure of the operator T.   To formulate it, we

introduce Q, the orthogonal projection of X onto the tangent space M =

|VpK(y)t   =\x - y\    at y,  and the positive semidefinite operator S = ^2pKiy)-

Lemma 4.   The operator T defined by (3.3) is a positive multiple of Q ° S.

Proof.   First we differentiate the function sgn ( * ) to obtain

D sgn(zz) • v = (||u||f - (sgn (u), f)«)/||zz||  ,

valid for all u / 8 and all v in X.   Then we can express T by

Tiz) =-L—- (||VpK(y)||SU)) - <sgn(VpK(y)), SU))VpK(y))

= -Jül— iSiz) - (sgn (VpK(y)), Siz)) sgn (VpK(y)))

dAx) dAx)
iSiz) -il-Q)o Siz)) = —- Q o Siz) = cQ o Siz). q-e.d.

l|v>K(v)|| ||VpK(y)||



96 R.B.HOLMES

We now complete the proof of Theorem 2 by showing that Í + T is bijective on

X.   Suppose that (i + T)iz) = 8 tot some z £ X,  that is z + cQ ° Siz) = 8.  Then

z e M (the tangent space to K at y), and so

0 < (Siz), z) = (Siz), Qiz))

= (QoS(z),z) = (-c-1z, z) = -c-X\\z\\2,

whence z - 8 and (i + T) is injective.

Finally, we show (i + T) is surjective.   We note first that the restriction

T | M is positive semidefinite.   Since M is invariant under (i + T) it then follows

that (l + T) | zM is an automorphism of M.   Now let n = sgn(Vp..(y)), and observe

that n 4 M while Tin) e M.   Hence p = ÍI + T)in) 4M.   Expressing any z e X as

ap + m,  lot some scalar a and m e M,  we set

m'=iil+T)\M)-lim),

and see that

(/ + T)ian + m) = ap + zzz a z.

The proof of Theorem 2 is now complete.

4.   The differential of the metric projection.   In this section we discuss some

properties of the differential DP Ax), under the hypotheses of Theorem. 2, and the

notation of § 3.   We begin by evaluation of the partial derivative D .Fix, y).  Using

(1.1) and (1.3) we find

DxFix, y) = I - (sgnU - PKix)), ■) sgn(VzjK(y))

= / - (sgn(VpK(y)), .) sgn(VpK(y)) = Q.

Consequently, we obtain the formula

(4.1) DPKix) = (/ + T)-x o Q = (; + CQ o S)-l o Q,

where c is the constant dKix)/\\VpKiy)\\ (using Lemma 4).

Although not apparent immediately from (4.1), it follows from (1.2), the con-

vexity of ipK, and the nonexpansiveness of PK, that DP„ix) is a selfadjoint

positive semidefinite operator on X of norm at most unity.   We observe from (4.1)

that DPyAx) can never vanish.   However, its norm can be arbitrarily small, as we

see by taking K to be the unit ball in X,  and computing that DPAx)= IMI""^.

We can also see from (4.1) and the results of § 3 that the tangent space M reduces

DPKix) and that DPKix)\M is an automorphism.

Our final results characterize relations of the form DP Ax)- pQ (where 0<
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¡i < 1) in terms of the behavior of the operator S ■ V2pK(y), introduced in § 3.

It is convenient to begin with a lemma.

Lemma 5.   The range of S is orthogonal to y, and hence Siy)= Ö.

Proof.   For all u £ 6 we have the Euler relation pKiu) = (u, VpKiu) ) (cf.

(1.8)).  We differentiate both sides of this equation to obtain

(v, VpK(a)> = (u, V2pK(a) . „)  + (v, VpK(B)>,

for all v £ X.   Therefore, setting u = y yields ( y, S(iz))= 0; the second assertion

of the lemma is immediate from the selfadjointness of 5.   q.e.d.

Let us agree to say that y is a flat point of K if S = 0.

Theorem 3.   We have DPK(x) = Q if and only if y s PK(x) is a flat point of

K.

Proof.  The condition is clearly sufficient since

s = o=-r = o=>(/ + T)o(3 = ö =»2 = (/ + t)-1°ö = pkW.

using (4.1).   Conversely, if DPKix) = Q, then by (4.1) again, we have T \ M = Q.

Then by Lemma 4, Q ° S | M = 0.  Hence the range of S | M lies in the null space

of Q, that is, in span(VpK(y)).   But, by Lemma 5, this range also lies in (y) f.

We claim that this entails S | M = 0.   Because,

span(VpK(y)) n (y)X = M1 n (y)1 = (span ly, M\f,

and this orthogonal complement will be [6\ provided that y 4 M.   If we did have

y e M then it would follow from (1.8) that

0 = (y. VpKiy)) = pKiy);

this equation, however, is a contradiction to the first assertion of Lemma 1.  So

we have S \ M = 0.   But since Siy) = 6 by Lemma 5, and since we just showed

y 4 M,  it follows that S = 0.   q.e.d.

Lastly, we consider the equation DPKix) = p.Q for 0 < p < 1.   Again we wish

to characterize this possibility in terms of the behavior of S.   Since we know that

S annulls a subspace complementary to M (namely, span(y)), it will suffice to

describe the behavior of the restriction S | M.

Theorem 4.   We have DPKix) = pQ (where 0 < p < l) if and only if there exist

À > 0 and a tangent vector m' £ M such that S \ M = XI - (',m') VpK(y).  Further,

m   =6 if and only if PKix) is a multiple of x (which is to say that at x metric

projection coincides with radial projection on K).
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Proof. (Necessity) We assume that DPKíx)= pQ, tot some p, 0< p< 1.

From (4.1) we obtain

\Q = Q o c o Q,       X = (1 - /iVc/x > 0.

In particular,

(4.2) Xm = Q°Sim),   VzzzeM

(which shows, incidentally, that S \ M is invertible). Now (4.2) implies the ex-

istence of cp £ M such that S(zzz) = Azzz - cpimWp^iy), so we may take zzz to be

the Riesz représenter of cp,.  Next, by Lemma 5, we can write, for any zzz e M,

(4.3) 0 = (S(zzz), y) = (Am, y) - (zzz, zzz')(y, VpK(y)>,

and the coefficient of (zzz, zzz ') here is not zero by Lemma 1.   Thus if zzz '•« 8 then

y £ M; this means that  PKix) i=y)  is a multiple of x - PKix), and hence of x.

Conversely, if PAx) is a multiple of x,  the preceding steps are reversible, so

we have y £ M    and then (4.3) entails zzz   - 8.

ÍSujficiency) We now assume that we have a A > 0 and zzz eil for which

Sim) = Azzz - ( zzz, zzz ) Vp„(y), V m £ M. From this follows equation (4.2). Now

define

p = 1/(1 + cA),

where c is the constant appearing in (4.1).   Then

il-p)Q = cpQ°S°Q = uToQ,

Q=p(Q + ToQ) = li(l+ T)oQ,

pQ = il+T)-X °Q = DPK(x),

and this completes the proof.

APPENDIX

Smoothness of the distance function in Banach spaces.   In this final section

we let X be a Banach space whose norm will be assumed to be appropriately smooth.

Our object is to discuss the smoothness of the distance function <sL where

K is a given convex Chebyshev set in X.   We show that this question can be re-

solved by appeal to general facts about the differentiability of convex functions.

Lemma 6.   Let f and g be real-vauled functions on X such that f < g, f

iresp. g) is continuous iresp. differentiable) at x £ X,  and f is convex.   Then f

is differentiable at x and V/U)= Vg(x).

Proof.   If cp is any subgradient of / at x,  our hypotheses imply cp < Vg(x)
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and so </> = Vg(x).  That is, df(x) = |Vg(x)L  This implies the conclusion of the

lemma using the formula of Moreau and Pshenichnii (cf. [4, pp. 27—28]). q.e.d.

Let us note that in Lemma 6 the assumed differentiability of g may be either

of Frechet or Gateaux type and the same type will then be obtained by /•   In the

following theorem we shall understand differentiation to be in the Frechet sense,

but the result remains valid in the case of Gateaux differentiability as well.

Theorem 5.   Let K be a convex Chebyshev subset of the Banach space X,

with metric projection  P„.

(a) If for some x £X\K the norm on X is differentiable at x - PKix), then

the distance function d„ is differentiable at x.

(b) If the norm on X is differentiable on x\|0i (i.e., X is a "strongly

smooth' ' Banach space), then d„ is of class  C    on X\K.

Proof.  To establish part (a) we simply apply Lemma 6 with / = dK and giz) =

\\z - P Ax) II'-  Now, as for part (b), our assumption together with the result of part

(a) show us that the convex function a\. is differentiable throughout the open set

X\K.   But now we can appeal to a result of Asplund and Rockafellar [2, p. 46l]

to conclude that dK is actually of class C    on X\K.   q.e.d.

Note that the formula for Vzi^ implied by Lemma 6 is

(A.l) VdK(x) = G(x - PKix)),

where G is the gradient of the norm on X,  and that the continuity of Va"„ in (b)

does not depend on the continuity of Pf, (which may of course be lacking).
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