Cross-sections of symplectic Stiefel manifolds
Authors:
François Sigrist and Ulrich Suter
Journal:
Trans. Amer. Math. Soc. 184 (1973), 247-259
MSC:
Primary 55F10; Secondary 55B15
DOI:
https://doi.org/10.1090/S0002-9947-1973-0326728-8
MathSciNet review:
0326728
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: The cross-section problem for the symplectic Stiefel manifolds is solved, using the now-proved Adams conjecture.
- [1] J. F. Adams, Vector fields on spheres, Ann. of Math. (2) 75 (1962), 603–632. MR 139178, https://doi.org/10.2307/1970213
- [2] J. F. Adams, On the groups 𝐽(𝑋). II, Topology 3 (1965), 137–171. MR 198468, https://doi.org/10.1016/0040-9383(65)90040-6
- [3] J. F. Adams and G. Walker, On complex Stiefel manifolds, Proc. Cambridge Philos. Soc. 61 (1965), 81–103. MR 171285
- [4] M. F. Atiyah, Thom complexes, Proc. London Math. Soc. (3) 11 (1961), 291–310. MR 0131880, https://doi.org/10.1112/plms/s3-11.1.291
- [5] M. F. Atiyah and F. Hirzebruch, Vector bundles and homogeneous spaces, Proc. Sympos. Pure Math., Vol. III, American Mathematical Society, Providence, R.I., 1961, pp. 7–38. MR 0139181
- [6] M. F. Atiyah and J. A. Todd, On complex Stiefel manifolds, Proc. Cambridge Philos. Soc. 56 (1960), 342–353. MR 132552, https://doi.org/10.1017/s0305004100034642
- [7] A. Borel and F. Hirzebruch, Characteristic classes and homogeneous spaces. I, Amer. J. Math. 80 (1958), 458–538. MR 102800, https://doi.org/10.2307/2372795
- [8] Raoul Bott, Quelques remarques sur les théorèmes de périodicité, Bull. Soc. Math. France 87 (1959), 293–310 (French). MR 126281
- [9] I. M. James, Cross-sections of Stiefel manifolds, Proc. London Math. Soc. (3) 8 (1958), 536–547. MR 0100840, https://doi.org/10.1112/plms/s3-8.4.536
- [10] I. M. James, Spaces associated with Stiefel manifolds, Proc. London Math. Soc. (3) 9 (1959), 115–140. MR 0102810, https://doi.org/10.1112/plms/s3-9.1.115
- [11] Daniel Quillen, The Adams conjecture, Topology 10 (1971), 67–80. MR 279804, https://doi.org/10.1016/0040-9383(71)90018-8
- [12] Ulrich Suter, Die Nicht-Existenz von Schnittflächen komplexer Stiefel-Mannigfaltigkeiten, Math. Z. 113 (1970), 196–204 (German). MR 266230, https://doi.org/10.1007/BF01110191
Retrieve articles in Transactions of the American Mathematical Society with MSC: 55F10, 55B15
Retrieve articles in all journals with MSC: 55F10, 55B15
Additional Information
DOI:
https://doi.org/10.1090/S0002-9947-1973-0326728-8
Keywords:
Stiefel manifold,
quaternionic projective space,
James number,
K-theory,
J-homomorphism,
Adams conjecture
Article copyright:
© Copyright 1973
American Mathematical Society