Finite- and infinite-dimensional representation of linear semisimple groups
HTML articles powered by AMS MathViewer
- by James Lepowsky and Nolan R. Wallach
- Trans. Amer. Math. Soc. 184 (1973), 223-246
- DOI: https://doi.org/10.1090/S0002-9947-1973-0327978-7
- PDF | Request permission
Abstract:
Every representation in the nonunitary principal series of a noncompact connected real semisimple linear Lie group G with maximal compact subgroup K is shown to have a K-finite cyclic vector. This is used to give a new proof of Harish-Chandra’s theorem that every member of the nonunitary principal series has a (finite) composition series. The methods of proof are based on finite-dimensional G-modules, concerning which some new results are derived. Further related results on infinite-dimensional representations are also obtained.References
- François Bruhat, Sur les représentations induites des groupes de Lie, Bull. Soc. Math. France 84 (1956), 97–205 (French). MR 84713, DOI 10.24033/bsmf.1469 P. Cartier, et al., Séminaire “Sophus Lie” de L’École Normale Supérieure 1954/55, Théorie des algébres de Lie. Topologie des groups de Lie, Secrétariat mathématique, Paris, 1955. MR 17, 384.
- Jacques Dixmier, Idéaux primitifs dans l’algèbre enveloppante d’une algèbre de Lie semi-simple complexe, C. R. Acad. Sci. Paris Sér. A-B 272 (1971), A1628–A1630 (French). MR 308225
- Harish-Chandra, Representations of a semisimple Lie group on a Banach space. I, Trans. Amer. Math. Soc. 75 (1953), 185–243. MR 56610, DOI 10.1090/S0002-9947-1953-0056610-2
- Harish-Chandra, Representations of semisimple Lie groups. II, Trans. Amer. Math. Soc. 76 (1954), 26–65. MR 58604, DOI 10.1090/S0002-9947-1954-0058604-0
- Harish-Chandra, The Plancherel formula for complex semisimple Lie groups, Trans. Amer. Math. Soc. 76 (1954), 485–528. MR 63376, DOI 10.1090/S0002-9947-1954-0063376-X
- Harish-Chandra, Invariant differential operators and distributions on a semisimple Lie algebra, Amer. J. Math. 86 (1964), 534–564. MR 180628, DOI 10.2307/2373023
- Sigurđur Helgason, A duality for symmetric spaces with applications to group representations, Advances in Math. 5 (1970), 1–154 (1970). MR 263988, DOI 10.1016/0001-8708(70)90037-X
- Nathan Jacobson, Lie algebras, Interscience Tracts in Pure and Applied Mathematics, No. 10, Interscience Publishers (a division of John Wiley & Sons, Inc.), New York-London, 1962. MR 0143793
- Bertram Kostant, On the existence and irreducibility of certain series of representations, Bull. Amer. Math. Soc. 75 (1969), 627–642. MR 245725, DOI 10.1090/S0002-9904-1969-12235-4
- J. Lepowsky, Multiplicity formulas for certain semisimple Lie groups, Bull. Amer. Math. Soc. 77 (1971), 601–605. MR 301142, DOI 10.1090/S0002-9904-1971-12767-2
- J. Lepowsky, Algebraic results on representations of semisimple Lie groups, Trans. Amer. Math. Soc. 176 (1973), 1–44. MR 346093, DOI 10.1090/S0002-9947-1973-0346093-X
- Hideya Matsumoto, Quelques remarques sur les groupes de Lie algébriques réels, J. Math. Soc. Japan 16 (1964), 419–446 (French). MR 183816, DOI 10.2969/jmsj/01640419
- K. R. Parthasarathy, R. Ranga Rao, and V. S. Varadarajan, Representations of complex semi-simple Lie groups and Lie algebras, Ann. of Math. (2) 85 (1967), 383–429. MR 225936, DOI 10.2307/1970351 C. Rader, Spherical functions on semisimple Lie groups, Ann. Sci. École Norm. Sup. (to appear).
- Ichirô Satake, On representations and compactifications of symmetric Riemannian spaces, Ann. of Math. (2) 71 (1960), 77–110. MR 118775, DOI 10.2307/1969880
- Nolan R. Wallach, Cyclic vectors and irreducibility for principal series representations, Trans. Amer. Math. Soc. 158 (1971), 107–113. MR 281844, DOI 10.1090/S0002-9947-1971-0281844-2
- Nolan R. Wallach, Cyclic vectors and irreducibility for principal series representations. II, Trans. Amer. Math. Soc. 164 (1972), 389–396. MR 320233, DOI 10.1090/S0002-9947-1972-0320233-X
Bibliographic Information
- © Copyright 1973 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 184 (1973), 223-246
- MSC: Primary 22E45
- DOI: https://doi.org/10.1090/S0002-9947-1973-0327978-7
- MathSciNet review: 0327978