On the singular boundary value problem for elliptic equations
HTML articles powered by AMS MathViewer
- by Kazunari Hayashida
- Trans. Amer. Math. Soc. 184 (1973), 205-221
- DOI: https://doi.org/10.1090/S0002-9947-1973-0328320-8
- PDF | Request permission
Abstract:
The operator $\mathcal {L}$ is elliptic and of second order in a domain $\Omega$ in ${R^N}$. We consider the following boundary value problem: $\mathcal {L}u = f$ in $\Omega$ and $\mathcal {B}u = 0$ on $\partial \Omega$, where $\mathcal {B} = ad/dn + \beta$ (d/dn is the conormal derivative on $\partial \Omega$). The coefficient $\alpha$ is assumed to be nonnegative. However, $\alpha$ may vanish partly on $\partial \Omega$. Then the regularity of the weak solutions for the above problem is shown by the variational method.References
- M. S. Baouendi and C. Goulaouic, Régularité et théorie spectrale pour une classe d’opérateurs elliptiques dégénérés, Arch. Rational Mech. Anal. 34 (1969), 361–379 (French). MR 249844, DOI 10.1007/BF00281438 R. Courant, Methods of mathematical physics. Vol. II: Partial differential equations, Interscience, New York, 1962. MR 25 #4216.
- Seizô Itô, Fundamental solutions of parabolic differential equations and boundary value problems, Jpn. J. Math. 27 (1957), 55–102. MR 98240, DOI 10.4099/jjm1924.27.0_{5}5
- J.-L. Lions and E. Magenes, Problèmes aux limites non homogènes. II, Ann. Inst. Fourier (Grenoble) 11 (1961), 137–178 (French). MR 146525, DOI 10.5802/aif.111
- Tadato Matsuzawa, Sur les èquations $u_{tt}+t^{\alpha }u_{xx} =f(\alpha \geqq 0)$, Nagoya Math. J. 42 (1971), 43–55 (French). MR 284699
- V. G. Maz′ja, The degenerate problem with oblique derivative, Uspehi Mat. Nauk 25 (1970), no. 2 (152), 275–276 (Russian). MR 0259393
- Louis Nirenberg, Remarks on strongly elliptic partial differential equations, Comm. Pure Appl. Math. 8 (1955), 649–675. MR 75415, DOI 10.1002/cpa.3160080414
- Norio Shimakura, Problèmes aux limites généraux du type elliptique dégénéré, J. Math. Kyoto Univ. 9 (1969), 275–335 (French). MR 254419, DOI 10.1215/kjm/1250523944
- M. I. Višik and V. V. Grušin, Elliptic boundary value problems that are degenerate on a submanifold of the boundary, Dokl. Akad. Nauk SSSR 190 (1970), 255–258 (Russian). MR 0262686
Bibliographic Information
- © Copyright 1973 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 184 (1973), 205-221
- MSC: Primary 35J25
- DOI: https://doi.org/10.1090/S0002-9947-1973-0328320-8
- MathSciNet review: 0328320