Restricting a Schauder basis to a set of positive measure
HTML articles powered by AMS MathViewer
- by James Shirey
- Trans. Amer. Math. Soc. 184 (1973), 61-71
- DOI: https://doi.org/10.1090/S0002-9947-1973-0330914-0
- PDF | Request permission
Abstract:
Let $\{ {f_n}\}$ be an orthonormal system of functions on [0, 1] containing a subsystem $\{ {f_{{n_k}}}\}$ for which (a) ${f_{{n_k}}} \to 0$ weakly in ${L_2}$, and (b) given $E \subset [0,1]$, $|E| > 0$, ${\operatorname {Lim}}\;{\operatorname {Inf}}{\smallint _E}|{f_{{n_k}}}(x)|dx > 0$. There then exists a subsystem $\{ {g_n}\}$ of $\{ {f_n}\}$ such that for any set E as above, the linear span of $\{ {g_n}\}$ in ${L_1}(E)$ is not dense. For every set E as above, there is an element of ${L_p}(E)$, $1 < p < \infty$, whose Walsh series expansion converges conditionally and an element of ${L_1}(E)$ whose Haar series expansion converges conditionally.References
- M. M. Day, Normed linear spaces, 2nd rev. ed., Ergebnisse der Mathematik und ihrer Grenzgebiete, N. F., Heft 21, Academic Press, New York; Springer-Verlag, Berlin, 1962. MR 26 #2847.
- V. F. Gapoškin, Lacunary series and independent functions, Uspehi Mat. Nauk 21 (1966), no. 6 (132), 3–82 (Russian). MR 0206556 S. Kaczmarz and H. Steinhaus, Theorie der Orthogonalreihen, reprint, Chelsea, New York, 1951. MR 20 #1148.
- M. I. Kadec and A. Pełczyński, Bases, lacunary sequences and complemented subspaces in the spaces $L_{p}$, Studia Math. 21 (1961/62), 161–176. MR 152879, DOI 10.4064/sm-21-2-161-176
- G. G. Lorentz, Bernstein polynomials, Mathematical Expositions, No. 8, University of Toronto Press, Toronto, 1953. MR 0057370
- Jürg T. Marti, Introduction to the theory of bases, Springer Tracts in Natural Philosophy, Vol. 18, Springer-Verlag New York, Inc., New York, 1969. MR 0438075, DOI 10.1007/978-3-642-87140-5 W. Orlicz, Über unbedingte Convergenz in Funktionräumen. I, Studia Math. 4 (1933), 33-37. R. E. A. C. Paley, A remarkable series of orthogonal functions, Proc. London Math. Soc. 34 (1931), 241-264.
- J. J. Price and Robert E. Zink, On sets of completeness for families of Haar functions, Trans. Amer. Math. Soc. 119 (1965), 262–269. MR 184023, DOI 10.1090/S0002-9947-1965-0184023-X
- J. E. Shirey and R. E. Zink, On unconditional bases in certain Banach function spaces, Studia Math. 36 (1970), 169–175. MR 275142, DOI 10.4064/sm-36-2-169-176
- Adriaan Cornelis Zaanen, Integration, North-Holland Publishing Co., Amsterdam; Interscience Publishers John Wiley & Sons, Inc., New York, 1967. Completely revised edition of An introduction to the theory of integration. MR 0222234
- Antoni Zygmund, Trigonometrical series, Chelsea Publishing Co., New York, 1952. 2nd ed. MR 0076084
Bibliographic Information
- © Copyright 1973 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 184 (1973), 61-71
- MSC: Primary 42A64
- DOI: https://doi.org/10.1090/S0002-9947-1973-0330914-0
- MathSciNet review: 0330914