Stability of foliations
Authors:
Harold I. Levine and Michael Shub
Journal:
Trans. Amer. Math. Soc. 184 (1973), 419-437
MSC:
Primary 58A30; Secondary 57D30
DOI:
https://doi.org/10.1090/S0002-9947-1973-0331417-X
MathSciNet review:
0331417
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: Let X be a compact manifold and let k be an integer. It is shown that the set of homeomorphism conjugacy classes of germs at X of foliations of codimension k and the set of homeomorphism conjugacy classes of (holonomy) representations of in the group of germs at 0 of 0-fixed self-diffeomorphisms of
are homeomorphic when given appropriate topologies. Stable foliation germs and stable holonomy representations correspond under this homeomorphism. It is shown that there are no stable foliation germs at a toral leaf if the dimension of the torus is greater than one.
- [H
] André Haefliger, Structures feuilletées et cohomologie à valeur dans un faisceau de groupoïdes, Comment. Math. Helv. 32 (1958), 248–329 (French). MR 100269, https://doi.org/10.1007/BF02564582
- [H
] André Haefliger, Variétés feuilletées, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (3) 16 (1962), 367–397 (French). MR 189060
- [H
] A. Haefliger, Feuilletages sur les variétés ouvertes, Topology 9 (1970), 183–194 (French). MR 263104, https://doi.org/10.1016/0040-9383(70)90040-6
- [Hirsch
] Morris W. Hirsch, Foliations and noncompact transformation groups, Bull. Amer. Math. Soc. 76 (1970), 1020–1023. MR 292102, https://doi.org/10.1090/S0002-9904-1970-12539-3
- [Hirsch
] . -, Stability of compact leaves of foliations, Proc. Internat. Conf. on Dynamical Systems, Salvador, Brasil 1971 (to appear).
- [H.P.S.] M. W. Hirsch, C. C. Pugh, and M. Shub, Invariant manifolds, Bull. Amer. Math. Soc. 76 (1970), 1015–1019. MR 292101, https://doi.org/10.1090/S0002-9904-1970-12537-X
- [Marcus] Lawrence Markus, Structurally stable differential systems, Ann. of Math. (2) 73 (1961), 1–19. MR 132888, https://doi.org/10.2307/1970280
- [M] J. Milnor, Topological manifolds and smooth manifolds, Proc. Internat. Congr. Mathematicians (Stockholm, 1962) Inst. Mittag-Leffler, Djursholm, 1963, pp. 132–138. MR 0161345
- [N] . Z. Nitecki, Differentiable dynamics, M.I.T. Press, Cambridge, Mass., 1972.
- [R] Georges Reeb, Sur certaines propriétés topologiques des variétés feuilletées, Actualités Sci. Ind., no. 1183, Hermann & Cie., Paris, 1952 (French). Publ. Inst. Math. Univ. Strasbourg 11, pp. 5–89, 155–156. MR 0055692
- [St] Norman Steenrod, The Topology of Fibre Bundles, Princeton Mathematical Series, vol. 14, Princeton University Press, Princeton, N. J., 1951. MR 0039258
Retrieve articles in Transactions of the American Mathematical Society with MSC: 58A30, 57D30
Retrieve articles in all journals with MSC: 58A30, 57D30
Additional Information
DOI:
https://doi.org/10.1090/S0002-9947-1973-0331417-X
Article copyright:
© Copyright 1973
American Mathematical Society