Measurable transformations on compact groups
HTML articles powered by AMS MathViewer
- by J. R. Choksi
- Trans. Amer. Math. Soc. 184 (1973), 101-124
- DOI: https://doi.org/10.1090/S0002-9947-1973-0338311-9
- PDF | Request permission
Abstract:
For an arbitrary finite Baire measure $\mu$ on an arbitrary compact group G, it is shown that every automorphism of the measure algebra of $\mu$ can be induced by an invertible completion Baire measurable point transformation of G. If $\mu$ is Haar measure, the point transformation is completion Borel measurable.References
- Salomon Bochner, Harmonic analysis and the theory of probability, University of California Press, Berkeley-Los Angeles, Calif., 1955. MR 0072370, DOI 10.1525/9780520345294
- J. R. Choksi, Inverse limits of measure spaces, Proc. London Math. Soc. (3) 8 (1958), 321–342. MR 96768, DOI 10.1112/plms/s3-8.3.321
- J. R. Choksi, Automorphisms of Baire measures on generalized cubes, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 22 (1972), 195–204. MR 310177, DOI 10.1007/BF00536090
- J. R. Choksi, Automorphisms of Baire measures on generalized cubes. II, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 23 (1972), 97–102. MR 318444, DOI 10.1007/BF00532851
- J. Feldman and F. P. Greenleaf, Existence of Borel transversals in groups, Pacific J. Math. 25 (1968), 455–461. MR 230837, DOI 10.2140/pjm.1968.25.455
- Leonard Gillman and Meyer Jerison, Rings of continuous functions, The University Series in Higher Mathematics, D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto-London-New York, 1960. MR 0116199, DOI 10.1007/978-1-4615-7819-2
- Paul R. Halmos, Measure Theory, D. Van Nostrand Co., Inc., New York, N. Y., 1950. MR 0033869, DOI 10.1007/978-1-4684-9440-2
- A. Ionescu Tulcea and C. Ionescu Tulcea, Topics in the theory of lifting, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 48, Springer-Verlag New York, Inc., New York, 1969. MR 0276438, DOI 10.1007/978-3-642-88507-5 K. Kuratowski, Topologie. I, 2nd ed., Monografie Mat., Tom 20, Warszawa-Wrocław, 1948; English transl., new ed., rev. and ȧug., Academic ress, New York; PWN, Warsaw, 1966. MR 10, 389; 36 #840.
- John Lamperti, On the isometries of certain function-spaces, Pacific J. Math. 8 (1958), 459–466. MR 105017, DOI 10.2140/pjm.1958.8.459
- George W. Mackey, Induced representations of locally compact groups. I, Ann. of Math. (2) 55 (1952), 101–139. MR 44536, DOI 10.2307/1969423
- Dorothy Maharam, Automorphisms of products of measure spaces, Proc. Amer. Math. Soc. 9 (1958), 702–707. MR 97494, DOI 10.1090/S0002-9939-1958-0097494-6
- J. von Neumann, Einige Sätze über messbare Abbildungen, Ann. of Math. (2) 33 (1932), no. 3, 574–586 (German). MR 1503077, DOI 10.2307/1968536
- R. Panzone and C. Segovia, Measurable transformations on compact spaces and O. N. systems on compact groups, Rev. Un. Mat. Argentina 22 (1964), 83–102 (1964). MR 171893
- L. S. Pontryagin, Topological groups, Gordon and Breach Science Publishers, Inc., New York-London-Paris, 1966. Translated from the second Russian edition by Arlen Brown. MR 0201557
- Laurent Schwartz, Radon measures on arbitrary topological spaces and cylindrical measures, Tata Institute of Fundamental Research Studies in Mathematics, No. 6, Published for the Tata Institute of Fundamental Research, Bombay by Oxford University Press, London, 1973. MR 0426084 A. Weil, L’intégration dans les groupes topologiques et ses applications, 2ième éd., Actualités Sci. Indust., no. 869-1145, Hermann, Paris, 1951. MR 3, 198.
- Dorothy Maharam, On smoothing compact measure spaces by multiplication, Trans. Amer. Math. Soc. 204 (1975), 1–39. MR 374367, DOI 10.1090/S0002-9947-1975-0374367-7
Bibliographic Information
- © Copyright 1973 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 184 (1973), 101-124
- MSC: Primary 28A60
- DOI: https://doi.org/10.1090/S0002-9947-1973-0338311-9
- MathSciNet review: 0338311