The representation of norm-continuous multipliers on $L^{\infty }$-spaces
HTML articles powered by AMS MathViewer
- by Gregory A. Hively
- Trans. Amer. Math. Soc. 184 (1973), 343-353
- DOI: https://doi.org/10.1090/S0002-9947-1973-0346425-2
- PDF | Request permission
Abstract:
If G is a group and ${\mathcal {L}^\infty }(G,\mathcal {S})$ is an appropriate space of bounded measurable functions on G, a representation is obtained for the algebra of norm-continuous multipliers on ${\mathcal {L}^\infty }(G,\mathcal {S})$ as an algebra of bounded additive set functions on G. If G is a locally compact group, a representation of the norm-continuous multipliers on the quotient space ${\mathcal {L}^\infty }(G)$ is obtained in terms of a quotient algebra of bounded additive set functions on G.References
- R. P. Agnew and A. P. Morse, Extensions of linear functionals, with applications to limits, integrals, measures, and densities, Ann. of Math. (2) 39 (1938), no. 1, 20–30. MR 1503385, DOI 10.2307/1968710
- Philip C. Curtis Jr. and Alessandro Figà-Talamanca, Factorization theorems for Banach algebras, Function Algebras (Proc. Internat. Sympos. on Function Algebras, Tulane Univ., 1965) Scott-Foresman, Chicago, Ill., 1966, pp. 169–185. MR 0203500
- Nelson Dunford and Jacob T. Schwartz, Linear Operators. I. General Theory, Pure and Applied Mathematics, Vol. 7, Interscience Publishers, Inc., New York; Interscience Publishers Ltd., London, 1958. With the assistance of W. G. Bade and R. G. Bartle. MR 0117523
- Paul R. Halmos, Measure Theory, D. Van Nostrand Co., Inc., New York, N. Y., 1950. MR 0033869, DOI 10.1007/978-1-4684-9440-2
- Edwin Hewitt and Kenneth A. Ross, Abstract harmonic analysis. Vol. I, 2nd ed., Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 115, Springer-Verlag, Berlin-New York, 1979. Structure of topological groups, integration theory, group representations. MR 551496, DOI 10.1007/978-1-4419-8638-2
- A. Ionescu Tulcea and C. Ionescu Tulcea, On the existence of a lifting commuting with the left translations of an arbitrary locally compact group, Proc. Fifth Berkeley Sympos. Math. Statist. and Probability (Berkeley, Calif., 1965/66) Univ. California Press, Berkeley, Calif., 1967, pp. 63–97. MR 0212122
- Roy A. Johnson, On product measures and Fubini’s theorem in locally compact space, Trans. Amer. Math. Soc. 123 (1966), 112–129. MR 197669, DOI 10.1090/S0002-9947-1966-0197669-0
- Marc A. Rieffel, Induced Banach representations of Banach algebras and locally compact groups, J. Functional Analysis 1 (1967), 443–491. MR 0223496, DOI 10.1016/0022-1236(67)90012-2
- James D. Stafney, Arens multiplication and convolution, Pacific J. Math. 14 (1964), 1423–1447. MR 177057, DOI 10.2140/pjm.1964.14.1423
- J. G. Wendel, Left centralizers and isomorphisms of group algebras, Pacific J. Math. 2 (1952), 251–261. MR 49911, DOI 10.2140/pjm.1952.2.251
- Walter Rudin, Invariant means on $L^{\infty }$, Studia Math. 44 (1972), 219–227. MR 304975, DOI 10.4064/sm-44-3-219-227
Bibliographic Information
- © Copyright 1973 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 184 (1973), 343-353
- MSC: Primary 43A22
- DOI: https://doi.org/10.1090/S0002-9947-1973-0346425-2
- MathSciNet review: 0346425