TRIANGULAR REPRESENTATIONS OF SPLITTING RINGS

BY
K. R. GOODEARL

ABSTRACT. The term "splitting ring" refers to a nonsingular ring R such that for any right R-module M, the singular submodule of M is a direct summand of M. If R has zero socle, then R is shown to be isomorphic to a formal triangular matrix ring (A, C, B_A), where A is a semiprime ring, C is a left and right artinian ring, and CBA is a bimodule. Also, necessary and sufficient conditions are found for such a formal triangular matrix ring to be a splitting ring.

1. Introduction and notation. In [5, Theorem 10], we showed that any right nonsingular ring is an essential product of a ring with essential right socle and a ring with zero right socle. [An essential product of two rings is any subdirect product which contains an essential right ideal of the direct product.] Using this result, [5, Theorem 12] reduces the problem of characterizing splitting rings to characterizing those with either essential socle or zero socle. Since the case of essential socle has been taken care of by [4, Corollary 5.4], only the case of zero socle remains. The purpose of this paper is to study the structure of such a splitting ring with zero socle by representing the ring as a formal triangular matrix ring.

In this paper all rings are associative with identity, and all modules are unital. Unspecified modules are right modules; thus any statement about a bimodule CBA refers to the module B_A unless the module CB is specifically mentioned. The reader is assumed to be familiar with the standard notions of singular and nonsingular modules; [3] or [4] may be consulted for details.

We give here for reference our notation, which coincides with that in [4]. For any ring R, we let $\mathcal{S}(R)$ denote the collection of essential right ideals of R. The singular submodule of a module A is denoted $Z(A)$, and for a ring R, we use $Z_r(R)$ in place of $Z(R_R)$. A submodule A of a module B is said to be \mathcal{S}-closed in B provided B/A is nonsingular, and we let $L^*(B)$ denote the collection of \mathcal{S}-closed submodules of B. Given any submodule A of B, there is a smallest \mathcal{S}-closed submodule C of B which contains A, and C is called the \mathcal{S}-closure of A in B. We note that the \mathcal{S}-closure of a two-sided ideal in a ring R is again a two-sided ideal of R. For ease of expression, a two-sided ideal of R which belongs to $L^*(R)$ is referred to as a "two-sided ideal in $L^*(R)$". Finally, we use S^o (or S^o_2) S is an exact functor from right R-modules to right modules over the ring S^oR (which coincides with the maximal right quotient ring of R).

Received by the editors August 4, 1972.

Key words and phrases. Nonsingular ring, singular submodule, splitting properties, splitting ring.
2. **The representation of a splitting ring.** In this section, we represent a right nonsingular splitting ring R (with zero socle) as a formal triangular matrix ring $(\mathcal{A}_\mathcal{C})$, where \mathcal{A} is a semiprime ring and \mathcal{C} is a left and right artinian ring. In order to accomplish this, some sort of chain condition on R is needed. This is provided by Theorem 1, which shows that the prime radical of R is finite dimensional. We conjecture that in fact R itself must be finite dimensional.

Theorem 1. Let R be a right nonsingular splitting ring such that $\text{soc}(R_R) = 0$. If P denotes the prime radical of R, then P_R is finite dimensional.

Proof. Our general procedure is to show first that all nilpotent ideals of R are finite dimensional. This allows us to prove that P has plenty of finite-dimensional submodules, which we use to show that P itself is finite dimensional. Organizationally, the proof consists of a series of lemmas, some of which are proved in slightly more generality than needed here in order to be used in subsequent theorems. We stipulate that Lemmas C through J include the hypothesis that R is a right nonsingular splitting ring with $\text{soc}(R_R) = 0$.

Lemma A. Let $Z_r(R) = 0$, and let N be any nilpotent two-sided ideal of R. If M is the \mathcal{S}-closure of N_R in R_R, then M is a two-sided ideal in $L^*(R)$ whose left annihilator belongs to $\mathcal{S}(R)$.

Proof. Letting H denote the left annihilator of M, we infer from the nonsingularity of R that H is also the left annihilator of N. To get $H \in \mathcal{S}(R)$, it suffices to show that any element $x \in R \setminus H$ has a nonzero right multiple in H. Observing that $xN \neq 0$, we infer that there must be a positive integer k for which $xN_k \neq 0$ and $xN_{k+1} = 0$. Choosing some $r \in N_k$ such that $xr \neq 0$, we see that xr is a nonzero element of H.

Lemma B. Let A be any nonsingular right R-module with zero socle. If B is any submodule of A, then B is the intersection of those essential submodules of A which contain B.

Proof. Given $x \in A \setminus B$, let K be maximal among those submodules of A which contain B but not x. We claim that K is essential in A.

Letting $f: A \to A/K$ denote the natural map, we see from the maximality of K that fx is a nonzero element of A/K which is contained in every nonzero submodule of A/K. Thus $(fx)_R$ is a simple, essential submodule of A/K. Inasmuch as $\text{soc}(A) = 0$, $(fx)_R$ cannot be projective. Recalling that all simple modules are either singular or projective [4, pp. 55, 56], we see that $(fx)_R$ must be singular. Since $(A/K)/(fx)_R$ is singular also, we infer that A/K is singular. Inasmuch as A is nonsingular, we conclude that K is essential in A.

Lemma C. Let M be a two-sided ideal in $L^*(R)$ whose left annihilator belongs to $\mathcal{S}(R)$. Then M_R is a direct summand of R_R.
Proof. If H denotes the left annihilator of M, then H is a two-sided ideal in $\mathcal{S}(R)$. Inasmuch as R/M is a nonsingular right R-module, [4, Lemma 5.2] says that $(R/M)/(R/M)H$ is a projective right (R/H)-module. Then $R/(M + H)$ is projective as an (R/H)-module, whence $(M + H)/H$ is a direct summand of R/H. Thus there exists an element $m \in M$ such that $m^2 - m \in H$ and $mR + H = M + H$.

From the equation $m^2 - m \in H$, we obtain $m^3 - m \in H$. Since $m \in M$, this yields $m^4 - w^2 = 0$; hence the element $e = m^2$ is an idempotent. Observing that $eR + H = M + H$, we multiply this equation on the right by M to obtain $eM = M^2$, whence $M^2 = eR$. Thus M^2 is a direct summand of R_R; hence it suffices to show that $M = M^2$.

If $M \neq M^2$, then according to Lemma B, M_R must have a proper essential submodule K which contains M^2. We infer that $M/K = Z(R/K)$, from which it follows that M/K is a direct summand of R/K. Thus R must have a right ideal J such that $M + J = R$ and $M \cap J = K$. Observing that $M = M^2 + JM$, we obtain $M \leq J$, which leads to the contradiction $M = K$.

Lemma D. Let e be an idempotent in the ring $Q = S^oR$ such that $R \cap eQ$ is a two-sided ideal of R.

(a) Re is a unital subring of eQe.
(b) Re is an essential right (Re)-submodule of eQe.
(c) $Z_r(Re) = 0$ and $S^o(Re) = eQe$.

Proof. (a) We must show that Re is closed under multiplication, and that e is an identity for Re. Given any $x \in R$, we have $x(R \cap eQ) \leq R \cap eQ \leq eQ$. Since $R \cap eQ$ is essential in eQ, it follows that $xeQ \leq eQ$. Therefore $Re \subseteq eQ$, from which the required results are immediate.

(b) If not, then eQ contains a nonzero element t such that $Re \cap tRe = 0$.

Since tQ is nonzero, it cannot be a singular right R-module. Thinking of t as an endomorphism of Q_R, it follows that t cannot be essential in Q_R. Inasmuch as R_R is essential in Q_R, we infer that $R \cap t^{-1}R$ is essential in Q_R, and thus that $(R \cap t^{-1}R \cap eQ) \otimes (1 - e)Q$ is essential in Q_R. Therefore $(R \cap t^{-1}R \cap eQ) \otimes (1 - e)Q$ cannot be contained in ker t. Noting that $(1 - e)Q \leq ker t$ already, we see that $R \cap t^{-1}R \cap eQ \leq R \cap ker t$. In view of Lemma B, it follows that $R \cap t^{-1}R$ must have an essential submodule F which contains $R \cap ker t$ but not $R \cap t^{-1}R \cap eQ$.

Set $I = \{(x,tx)|x \in F\}$ and $J = \{(x,tx)|x \in R \cap t^{-1}R\}$, both of which are submodules of R^2. Since F is essential in $R \cap t^{-1}R$, it follows that I is essential in J, whence J/I is singular. There exists a map $f: R^2 \rightarrow Q$ given by $f(x,y) = y - tx$, and we check that ker $f = J$. Thus R^2/J is nonsingular; hence $J/I = Z(R^2/I)$. Therefore R^2 must contain a submodule K for which $J + K = R^2$ and $J \cap K = I$.

There exists an element $x \in (R \cap t^{-1}R \cap eQ)/F$. Set $m_1 = x$ and $m_2 = tx.$
and note that \(m_1, m_2 \in R \cap eQ \). Also, let \(z_1 \) and \(z_2 \) denote the elements \((1,0)\) and \((0,1)\) in \(R^2 \).

Since \(R^2 = J + K \), we obtain \(z_i + (u_i, tu_i) \in K \) for some \(u_i \in R \cap t^{-1}R \). Note that \(z_i m_i + (u_i m_i, tu_i m_i) \in K \) also. Observing that \(tu_i m_i \in R \cap \ker t \leq F \), so that \((u_i m_i, tu_i m_i) \in I \leq K \), from which we get \(z_i m_i \in K \).

Now \((x,tx) = z_1 m_1 + z_2 m_2 \in K \). Since \(x \in R \cap t^{-1}R \), we also have \((x,tx) \in J \), whence \(x \in F \), which is a contradiction.

(c) Inasmuch as \(Q \) is a regular, right self-injective ring, \(eQ \) must be a nonsingular injective right \(Q \)-module. According to [4, Proposition 1.17], \(eQe \) is thus a regular, right self-injective ring. In view of (a) and (b), [4, Proposition 1.16] now says that \(Z_r(Re) = 0 \) and \(S^0(Re) = eQe \).

Lemma E. Let \(e \) be an idempotent in \(R \) such that \(eR \) is a two-sided ideal. If \(R(1 - e) \subseteq S(R) \), then all nonsingular right \((eRe)\)-modules are projective.

Proof. Setting \(C = eRe \), we see from Lemma D that \(Z_r(C) = 0 \) and \(S^0C = eQe \), where \(Q = S^0R \). Lemma D also shows that \(C = Re \), from which we infer that \(r \mapsto re \) is a unital ring map of \(R \) onto \(C \). Therefore \(C \cong R/R(1-e) \).

Since \(R(1-e) \subseteq S(R) \), it follows as in [4, Theorem 5.3] that \(C \) is a right perfect ring. According to [1, Theorem P], this means that all flat right \(C \)-modules are projective; hence it suffices to show that all nonsingular right \(C \)-modules are flat. By [4, Proposition 2.1], this is equivalent to showing that \((S^0C)_C \) is flat and that \(\text{GWD}(C) \leq 1 \). We shall prove this by showing that all right \(C \)-submodules of \(S^0C \) are flat.

Thus consider any \(E \subseteq (eQe)_C \). Noting that \(ER \) is a nonsingular right \(R \)-module and that \(H = R(1-e) \) is a two-sided ideal in \(S(R) \), we obtain from [4, Lemma 5.2] that \(ER/EH \) is a projective right \((R/H)\)-module. We have an abelian group epimorphism \(f: ER \to E \) given by \(fx = xe \), and it is easily checked that the kernel of \(f \) is \(EH \). Inasmuch as \(f(xr) = (fx)(re) \) for all \(x \in ER \) and \(r \in R \), we conclude that \(E \) must be a projective right \(C \)-module. Therefore \(E_C \) is certainly flat.

Lemma F. If \(N \) is any nilpotent two-sided ideal of \(R \), then \(N_R \) is finite dimensional.

Proof. Setting \(M \) equal to the \(S \)-closure of \(N_R \) in \(R_R \), we see from Lemma A that \(M \) is a two-sided ideal in \(L^0(S) \) whose left annihilator belongs to \(S(R) \). In view of Lemma C, there exists an idempotent \(e \in R \) such that \(eR = M \). Then Lemmas D and E say that \(Z_r(eRe) = 0 \) and that all nonsingular right \((eRe)\)-modules are projective. According to [4, Theorem 2.11], \(eRe \) must be finite dimensional as a right module over itself. Letting \(Q = S^0R \), we have \(S^0(eRe) = eQe \) by Lemma D; hence [4, Theorem 1.26] says that \(eQe \) is a semisimple ring.

There must exist orthogonal idempotents \(e_1, \ldots, e_n \in eQe \) such that \(e_1 + \cdots + e_n = e \) and each \(e_iQe_i \) is a division ring. Noting that \(Q \) is a semiprime ring (because it is regular), we see from [6, Proposition 2, p. 63] that the \(e_iQ \) are...
minimal right ideals of Q. Therefore eQ is a finitely generated semisimple right Q-module. Observing that $S^c(eR) = eQ$, we infer from [4, Theorem 1.24] that $(eR)_R$ is finite dimensional, whence N_R is finite dimensional.

Lemma G. Let P denote the prime radical of R. Then any nonzero submodule of P_R contains a nonzero finite-dimensional submodule.

Proof. Let T denote the union of all nilpotent two-sided ideals of R, and note that T is a two-sided ideal. Any nonzero submodule A of T_R must have nonzero intersection with some nilpotent two-sided ideal N, and $A \cap N$ is a finite dimensional module by Lemma F. Therefore every nonzero submodule of T_R has a nonzero finite dimensional submodule. To prove that P_R satisfies the same property, it suffices to show that T_R is essential in P_R.

Let H be maximal among those two-sided ideals of R containing T for which T_R is essential in H_R. We claim that $P \leq H$.

Suppose not. Inasmuch as P is contained in every semiprime ideal of R [7, Theorem 4.20], H cannot be a semiprime ideal. Thus there exists a two-sided ideal K, properly containing H, such that $K^2 \leq H$. Due to the maximality of H, T_R is not essential in K_R, from which we infer that H_R is not essential in K_R. Therefore there exists a nonzero element $x \in K$ which has no nonzero right multiples in H. Letting J denote the left annihilator of K, we infer from the equation $K^2 \leq H$ that $x \in J \cap K$. But $J \cap K$ is nilpotent and hence contained in T, from which it follows that $x \in H$, which is impossible.

Therefore $P \leq H$; hence T_R is essential in P_R.

Lemma H. The ring $Q = S^c R$ is a splitting ring.

Proof. We first show that $Q \otimes_R Q$ is a nonsingular right R-module. According to [2, Theorem 1.6], it suffices to show that for any $a \in Q$, the right ideal $I = \{x \in R | ax \in R\}$ has a finitely generated essential submodule. Using [4, Theorem 4.6 and Proposition 4.8], we see that I is AFG, i.e., that $I/soc(I)$ is finitely generated. Inasmuch as $soc(R_R) = 0$, it follows that I is finitely generated. Therefore $(Q \otimes_R Q)_R$ is nonsingular. According to [4, Lemma 1.25], it follows that the natural map $Q \otimes_R Q \to Q$ is an isomorphism.

We must show that any short exact sequence $E: 0 \to C \to B \to A \to 0$ splits, where A, B, and C are right Q-modules such that C is singular and A is nonsingular. According to [4, Proposition 1.10], C_R is singular and A_R is nonsingular, whence E splits as a sequence of R-modules. Thus we obtain a split exact sequence $E^*: 0 \to C \otimes_R Q \to B \otimes_R Q \to A \otimes_R Q \to 0$ of right Q-modules. Inasmuch as the natural map $Q \otimes_R Q \to Q$ is an isomorphism, we infer that E^* is naturally isomorphic to E, hence E must split.

Lemma I. If $Q = S^c R$, then $soc(Q_Q)$ is finitely generated.

Proof. According to [5, Theorem 10], Q is an essential product of a ring with essential right socle and ring with zero right socle. Inasmuch as Q is its own maximal right quotient ring, it follows from [5, Proposition 2] that Q is actually
a direct product $H \times K$, where H_H has essential socle and K_K has zero socle. If J denotes the socle of Q_Q, then we see that also $J = \text{soc}(H_H)$, and J_H is essential in H_H.

It follows from Lemma H that H is a splitting ring; hence [4, Corollary 5.4] says that H/J is a semiprimary ring. Since Q is a regular ring, we infer that H/J is also a regular ring, whence H/J is actually a semisimple ring.

Now suppose that J_Q is not finitely generated. Then we can write $J = \bigoplus_{n=1}^{\infty} J_n$, where each J_n is an infinite direct sum of simple modules. Observing that H_H is injective (since Q_Q is injective), we infer that for each positive integer s, there must exist an idempotent $e_s \in H$ such that $e_s H$ is an injective hull for J_s and $(1 - e_s) H$ is an injective hull for $\bigoplus_{n \neq s} J_n$. Note that the idempotents e_s are mutually orthogonal. Inasmuch as $e_s H$ contains the infinite direct sum J_s, it follows that $e_s H$ cannot be semisimple. Thus $e_s H \leq J$, i.e., $e_s \notin J$. Therefore the images of the elements e_s in H/J form an infinite orthogonal sequence of nonzero idempotents, which contradicts the fact that H/J is a semisimple ring.

Lemma J. If P denotes the prime radical of R, then P_R is finite dimensional.

Proof. Set $Q = S^o R$ and $J = \text{soc}(Q_Q)$, and let F denote the sum of all the finite-dimensional submodules of P_R. It follows from Lemma G that F is essential in P_R, from which we infer that $S^o F = S^o P$. If A is any finite-dimensional submodule of P_R, then [4, Theorem 1.24] says that $S^o A$ is a finitely generated semisimple right Q-module; hence $A \leq S^o A \leq J$. Thus $F \leq J$, and so $S^o P = S^o F \leq S^o J$.

According to Lemma I, J_Q is finitely generated. Inasmuch as Q is a regular ring, it follows that J is a direct summand of Q, from which we infer that $S^o J = J$. Therefore $S^o P \leq J$, whence $S^o P$ is a finitely generated semisimple right Q-module. By [4, Theorem 1.24], P_R must be finite dimensional.

Theorem 2. Let R be a right nonsingular splitting ring with $\text{soc}(R_R) = 0$. Then R is isomorphic to a formal triangular matrix ring $(\begin{smallmatrix} A & C \\ 0 & B \end{smallmatrix})$, where A is a semiprime ring, C is a left and right artinian ring, and C_B is faithful.

Proof. We first need a maximal element in the collection \mathcal{A} of those two-sided ideals in $L^*(R)$ whose left annihilators belong to $\mathcal{S}(R)$. Let P denote the prime radical of R, and set $\mathcal{B} = \{ A \cap P \mid A \in \mathcal{A} \}$. Inasmuch as P_R is finite dimensional by Theorem 1, [4, Theorem 1.24] says that $L^*(P)$ has ACC. Thus \mathcal{B} must have a maximal element, which is of the form $M \cap P$ for some $M \in \mathcal{A}$. We claim that M is maximal in \mathcal{A}.

Consider any ideal $N \in \mathcal{A}$ which contains M. Letting K denote the left annihilator of N, we see that $N \cap K$ is nilpotent and hence contained in P, whence $N \cap K \subseteq N \cap P$. The maximality of $M \cap P$ implies that $N \cap P = M \cap P$, from which we obtain $N \cap K \subseteq M$. Observing that $K \in \mathcal{S}(R)$, we see that $(N \cap K)_R$ is essential in N_R. Inasmuch as $M \in L^*(R)$, it follows that $N \subseteq M$. Therefore M is maximal in \mathcal{A}.
We next claim that R/M is a semiprime ring. If not, then it must have a nonzero nilpotent two-sided ideal N/M. Letting T denote the \mathcal{S}-closure of N_R in R_R, it follows just as in Lemma A that the ideal $H = \{ r \in R \mid rT \subseteq M \}$ must belong to $\mathcal{S}(R)$. Inasmuch as the left annihilator K of M also belongs to $\mathcal{S}(R)$, we see that R/K and K/KH are both singular right R-modules, whence R/KH is singular and $KH \in \mathcal{S}(R)$. Noting that $KHT = 0$, we infer that the left annihilator of T belongs to $\mathcal{S}(R)$. But then $T \in \mathcal{A}$, which contradicts the maximality of M.

According to Lemma C, there exists an idempotent $e \in R$ such that $eR = M$. Since eR is a two-sided ideal, we obtain $(1 - e)Re = 0$. Therefore R is isomorphic to the ring $(\begin{smallmatrix} A & 0 \\ 0 & C \end{smallmatrix})$, where $A = (1 - e)R(1 - e)$, $B = eR(1 - e)$, and $C = eRe$. Observing that $R/M \cong A$, we see that A is a semiprime ring.

Since $M \in \mathcal{A}$, its left annihilator $R(1 - e)$ must belong to $\mathcal{S}(R)$. According to Lemmas D and E, $\mathcal{Z}(C) = 0$ and all nonsingular right C-modules are projective; hence [4, Theorem 2.12] shows that C is left and right artinian. Any $x \in C$ satisfying $xB = 0$ must also satisfy $xR(1 - e) = 0$, and then $x = 0$ [because $R(1 - e) \in \mathcal{S}(R)$]. Therefore cB is faithful.

3. Formal triangular matrix rings. The purpose of this section is to derive a few basic properties of a formal triangular matrix ring $(\begin{smallmatrix} A & 0 \\ 0 & C \end{smallmatrix})$. We are mainly interested in when such a ring can be nonsingular, and in finding the maximal quotient ring of such a ring.

Throughout this section, we assume that A and C are rings, that CBA is a bimodule, and that R is the ring $(\begin{smallmatrix} A & 0 \\ 0 & C \end{smallmatrix})$. In order to avoid some unnecessary complications, we also make the stipulation that cB is faithful.

Proposition 3. (a) A right ideal I of R belongs to $\mathcal{S}(R)$ if and only if it contains a right ideal of the form $(\begin{smallmatrix} J & 0 \\ 0 & 0 \end{smallmatrix})$, where $J \in \mathcal{S}(A)$ and K_A is essential in B_A.

(b) RR is nonsingular if and only if AA and BA are both nonsingular.

(c) $\mathcal{S}(R_R) = \begin{pmatrix} \mathcal{S}(A_A) & 0 \\ \mathcal{S}(B_A) & 0 \end{pmatrix}$.

Proof. (a) If $I \in \mathcal{S}(R)$, then it is easily seen to contain such a right ideal. Conversely, if I contains a right ideal $(\begin{smallmatrix} J & 0 \\ 0 & 0 \end{smallmatrix})$ of the form described, then we easily infer that $(\begin{smallmatrix} J & 0 \\ 0 & 0 \end{smallmatrix})$ is essential in $(\begin{smallmatrix} A & 0 \\ 0 & C \end{smallmatrix})$. Inasmuch as cB is faithful, it follows that $(\begin{smallmatrix} J & 0 \\ 0 & 0 \end{smallmatrix}) \in \mathcal{S}(R)$, from which we infer that $(\begin{smallmatrix} J & 0 \\ 0 & 0 \end{smallmatrix}) \in \mathcal{S}(R)$, and then that $I \in \mathcal{S}(R)$.

(b) If R_R is nonsingular, then it is immediate from (a) that A_A and B_A are nonsingular.

Conversely, assume that A_A and B_A are nonsingular, and consider any element $(\begin{smallmatrix} a & b \\ 0 & c \end{smallmatrix}) \in Z_3(R)$. In view of (a), we obtain $(\begin{smallmatrix} a & b \\ 0 & c \end{smallmatrix}) = 0$ for some $J \in \mathcal{S}(A)$ and some essential submodule K of B. We have $aJ = 0$ and $bJ = 0$; hence $a = 0$ and $b = 0$. We also have $cK = 0$, whence cB is an epimorphic image of the singular module B/K. It follows that $cB = 0$, and then the faithfulness of cB implies that $c = 0$. Therefore $Z_3(R) = 0$.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
(c) According to [4, Corollary 1.3], the socle of any module is the intersection of its essential submodules; hence (c) follows immediately from (a).

Let us now assume that A and B are nonsingular, so that R is nonsingular. Set $T = \text{End}_A(S^\circ B)$ and $X = \text{Hom}_A(S^\circ B, S^\circ A)$. Since CB is faithful, we may think of C as a subring of the endomorphism ring of B_A. Then each element $c \in C$ induces a unique endomorphism $S^\circ c$ of $S^\circ B$; hence we obtain an embedding $c \mapsto S^\circ c$ of $C \hookrightarrow T$. For ease of notation, we may thus assume that C is a unital subring of T satisfying $CB \leq B$. We note that the faithfulness of CB is now a consequence of the assumption that C is a subring of T.

Proposition 4. $S^\circ R = (\frac{S^\circ X}{S^\circ T})$.

Note. To multiply an element $b \in S^\circ B$ by an element $f \in X$, we just let bf stand for the map $x \mapsto bf(x).$

Proof. Set $Q = (\frac{S^\circ X}{S^\circ T})$. Recalling that the $S^\circ A$-homomorphisms from $S^\circ A$ to $S^\circ A$ or to $S^\circ B$ are the same as the A-homomorphisms, we see that $S^\circ A$ and $S^\circ B$ may be identified with $\text{End}_A(S^\circ A)$ and $\text{Hom}_A(S^\circ A, S^\circ B)$. With these identifications, Q is naturally isomorphic to the ring $\text{End}_A(S^\circ A \otimes S^\circ B)$. Inasmuch as $S^\circ A \otimes S^\circ B$ is a nonsingular injective right A-module, it follows from [4, Proposition 1.17] that Q is regular and right self-injective.

Inasmuch as A is essential in $S^\circ A$ and B is essential in $S^\circ B$, we see that R is essential in the module $P_R = (S^\circ X, S^\circ T)$. Now P is also a unital subring of Q, and we check that P_P is essential in Q_P, from which it is easy to infer that R_R is essential in Q_R. According to [4, Proposition 1.16], it follows that $S^\circ R = Q$.

4. Triangular splitting rings. This section is devoted to developing necessary and sufficient conditions for a formal triangular matrix ring (with zero socle) to be a splitting ring. In light of §3, we assume throughout this section that:

(a) A is a right nonsingular ring.
(b) B is a nonsingular right A-module.
(c) C is a unital subring of $T = \text{End}_A(S^\circ B)$ such that $CB \leq B$.
(d) $R = (\frac{A}{B})$.

For convenience, we label the following three two-sided ideals of R:

$$R_{12} = \begin{pmatrix} A & 0 \\ B & 0 \end{pmatrix}, \quad R_2 = \begin{pmatrix} 0 & 0 \\ B & 0 \end{pmatrix}, \quad \text{and} \quad R_{23} = \begin{pmatrix} 0 & 0 \\ B & C \end{pmatrix}.$$

Note that $R(R/R_{12})$ and $(R/R_{23})_R$ are projective, that $R_{12} \in \mathcal{S}(R)$, and that $R_{23} \in L^*(R)$.

Theorem 5. Assume that $\text{soc}(R) = 0$. If R is a splitting ring, then

(a) A is a splitting ring.
(b) B_A is injective.
(c) C_C is essential in T_C.
(d) All nonsingular right C-modules are projective.
TRIANGULAR REPRESENTATIONS OF SPLITTING RINGS

(For characterizations of rings satisfying (d), see [4, Theorems 2.11, 2.12, and 2.15].)

Proof. (a) Note that \(A \cong R/R_{23} \). Since \(R_{23} \) is a two-sided ideal in \(L^*(R) \), [4, Proposition 1.11] says that the singular submodule of any right \((R/R_{23}) \)-module is the same whether considered as an \((R/R_{23}) \)-module or as an \(R \)-module. Thus \(R/R_{23} \) must be a splitting ring.

(c)(d) The element \(e = (\begin{smallmatrix} 1 & 0 \\ 0 & 0 \end{smallmatrix}) \) is an idempotent in \(R \) such that \(eR \) is a two-sided ideal and such that \(R(1 - e) \subseteq S(R) \). In view of Proposition 4, we see that \(eRe = (\begin{smallmatrix} 1 & 0 \\ 0 & 1 \end{smallmatrix}) \) and \(e(S^0R)e = (\begin{smallmatrix} 0 & 0 \\ 0 & 1 \end{smallmatrix}) \). According to Lemmas D and E, it follows that \(C_C \) is essential in \(T_C \) and that all nonsingular right \(C \)-modules are projective. For use in the proof of (b), we note that Lemma D also says that \(Z_c(C) = 0 \) and that \(S^0C = T \).

(b) We proceed via several lemmas. With the exception of Lemma N, we stipulate that Lemmas K through O all include the hypothesis that \(R \) is a splitting ring with \(soc(R_A) = 0 \).

Lemma K. \(S^0B \) is a finitely generated semisimple right \(S^0A \)-module.

Proof. Since \(R_2 \) is nilpotent and therefore contained in the prime radical of \(R \), Theorem 1 says that \(R_2 \) is a finite-dimensional right \(R \)-module. Thus \(B_A \) must be finite dimensional. According to [4, Theorem 1.24], \(S^0B \) is finitely generated and semisimple.

Lemma L. If \(M \) is any simple \(S^0A \)-submodule of \(S^0B \), then there exists an idempotent \(e \in C \) such that \(e(S^0B) = M \) and \(eTe = eCe \).

Proof. In view of Lemma K, \(M \) must be a direct summand of \(S^0B \); hence \(M = f(S^0B) \) for some idempotent \(f \in T \). Inasmuch as the \(A \)-endomorphisms of \(M \) coincide with the \(S^0A \)-endomorphisms, we infer that \(fTf \) is isomorphic to the ring of \(S^0A \)-endomorphisms of \(M \), from which it follows that \(fTf \) is a division ring. Noting that \(T \) is regular and therefore semiprime, we obtain from [6, Proposition 2, p. 63] that \(fTf \) is a minimal right ideal of \(T \).

Observing that \(C/(C \cap fT) \) is a nonsingular right \(C \)-module, we see from (d) that \(C \cap fT = eC \) for some idempotent \(e \in C \). Since \(C_C \) is essential in \(T_C \) by (c), we obtain \(C \cap fT \neq 0 \), whence the minimality of \(fTf \) implies that \(eT = fTf \). Therefore \(e(S^0B) = f(S^0B) = M \). Since \(eT \) is a minimal right ideal of \(T \), it follows as in the proof of [4, Theorem 2.14] that \(eT \) must be a uniserial right \(C \)-module. In particular, \(eC \) must be a characteristic submodule of \(eT \), from which we infer that \((eTe)(eC) \leq eC \); hence \(eTe = eCe \).

Lemma M. Let \(M \) be any simple \(S^0A \)-submodule of \(S^0B \). If \(I = \{a \in A \mid (M \cap B)a = 0\} \), then \(MI = 0 \).

Proof. Set \(Q = S^0R \) and \(H = (\begin{smallmatrix} 0 & 0 \\ 0 & 0 \end{smallmatrix}) \), and note that \(H \) is a two-sided ideal of \(R \). Since \(S^0I \) is injective, we must have \(S^0I = f(S^0A) \) for some idempotent \(f \in S^0A \). Setting \(g = (\begin{smallmatrix} 0 & 0 \\ 0 & 1 \end{smallmatrix}) \), we infer that \(H_g \) is essential in \(gQ \), from which it
follows that \(S^\circ H = gQ \). Thus \(R \cap gQ \) is the \(S \)-closure of \(H_R \) in \(R_R \), which is a two-sided ideal of \(R \).

According to Lemma D, \(Rg \) is a unital subring of \(gQg \) and \(Rg \) is an essential right \((Rg)\)-submodule of \(gQg \). Observing that

\[
Rg = \begin{pmatrix} Af & 0 \\ Bf & C \end{pmatrix} \quad \text{and} \quad gQg = \begin{pmatrix} f(S^\circ A)f & fX \\ (S^\circ B)f & T \end{pmatrix},
\]

we infer that \(Af \) is a unital subring of \(f(S^\circ A)f \) and that \(Bf \) is an essential right \((Af)\)-submodule of \(f(S^\circ B)f \).

According to Lemma L, there exists an idempotent \(e \in C \) such that \(e(S^\circ B) = M \). Since \(e \in C \), we have \(eB \leq B \), whence \(eB = M \cap B \). Thus \(eBI = 0 \); hence \(eB(S^\circ I) \) is a sum of epimorphic images of the singular module \(S^\circ I/I \). It follows that \(eB(S^\circ I) = 0 \), whence \(eBf = 0 \). Observing that \(eBf \) is an essential right \((Af)\)-submodule of \(e(S^\circ B)f \), we obtain \(e(S^\circ B)f = 0 \), from which we conclude that \(M I = 0 \).

Lemma N. [For this lemma, we only need the hypotheses that soc\((R_R) = 0 \) and that \(A \) is a splitting ring.] Let \(M \) be any simple \(S^\circ A \)-submodule of \(S^\circ B \). If \(I = \{ a \in A \mid Ma = 0 \} \), then \(Z_r(A/I) = M \) is a simple right \(S^\circ(A/I) \)-module, and \(S^\circ(A/I) \) is a simple artinian ring.

Proof. Inasmuch as \(M \) is nonsingular, we see that \(I \in L^*(A) \). According to [4, Proposition 1.11], it follows that \(Z_r(A/I) = M \) and that the singular submodule of any right \((A/I)\)-module is the same whether considered as an \((A/I)\)-module or as an \(A \)-module. Since \(A \) is a splitting ring, it follows that \(A/I \) is a splitting ring also. By Proposition 3, we have \(\text{soc}(A_A) = 0 \). Recalling that all simple nonsingular modules are projective [4, pp. 55, 56], we infer that the ring \(A/I \) must have zero right socle. Setting \(P = S^\circ(A/I) \), we thus obtain from Lemma I that \(\text{soc}(P_P) \) is finitely generated. Inasmuch as \(P \) is a regular ring, \(\text{soc}(P_P) \) must thus be a direct summand of \(P_P \).

Noting that \(M \) is finitely generated as an \(S^\circ A \)-module, we see from [4, Proposition 1.15] that \(M \) is a direct summand of \(S^\circ B \), from which it follows that \(M_A \) is injective. Since \(MI = 0 \), \(M \) is also an injective right \((A/I)\)-module. Now \(M \) is nonsingular as an \(A \)-module and thus as an \((A/I)\)-module; hence we obtain \(S^\circ_A/I M = M \). Therefore \(M \) is a right \(P \)-module.

Inasmuch as \(S^\circ_A M = M \), the simplicity of \(M \) implies that \(M \) is indecomposable as an \(A \)-module, from which we infer that \(M \) must also be indecomposable as a \(P \)-module. Noting from [4, Proposition 1.15] that all finitely generated \(P \)-submodules of \(M \) are direct summands of \(M \), we conclude that \(M \) is a simple \(P \)-module.

Observing that \(\{ x \in P \mid Mx = 0 \} \cap (A/I) = 0 \), we obtain \(\{ x \in P \mid Mx = 0 \} = 0 \). Therefore \(M \) is a faithful simple \(P \)-module; hence \(P \) is a primitive
ring. In particular, P is a prime ring. The module M_P is also nonsingular and simple, hence projective, from which we see that P must contain a minimal right ideal. Thus $\text{soc}(P_P)$ is a nonzero two-sided ideal in the prime ring P; hence the left annihilator of $\text{soc}(P_P)$ must be zero. It follows that $\text{soc}(P_P)$ is an essential right ideal of P. Since $\text{soc}(P_P)$ is also a direct summand of P, we conclude that $\text{soc}(P_P) = P$, i.e., P is a semisimple ring. Inasmuch as P is prime, it must therefore be simple artinian.

Lemma O. B_A is injective.

Proof. Suppose not. Since $S^0 B$ is an injective A-module, we obtain $B < S^0 B$. In view of Lemma K, $S^0 B$ must contain a simple $S^0 A$-submodule M such that $M \leq B$, i.e., $M \cap B < M$. Setting $I = \{a \in A \mid (M \cap B)a = 0\}$ and $P = S^0(A/I)$, we see from Lemmas M and N that $MI = 0$, $Z_r(A/I) = 0$, M is a simple right P-module, and P is a simple artinian ring. Note that since $\{x \in P \mid (M \cap B)x = 0\} \cap (A/I) = 0$, we obtain $\{x \in P \mid (M \cap B)x = 0\} = 0$.

According to Lemma L, there exists an idempotent $e \in C$ such that $e(S^0 B) = M$ and $eTe = eCe$. Inasmuch as $CB \leq B$, we infer that $M \cap B$ is a left (eTe)-submodule of M.

The P-endomorphisms of M coincide with the (A/I)-endomorphisms, and the A-endomorphisms of M are just the left multiplications by the elements of eTe; hence we may identify eTe with the endomorphism ring of M_P. Since M_P is simple and P is a simple artinian ring, we infer that eTe is a division ring, that M is a finite-dimensional left vector space over eTe, and that P is the ring of all linear transformations on M. However, $M \cap B$ is a proper subspace of M, and no nonzero element of P annihilates $M \cap B$, which is impossible.

Theorem 6. Assume that $\text{soc}(R_R) = 0$. If the following conditions are satisfied, then R is a splitting ring:

(a) A is a splitting ring.

(b) B_A is injective.

(c) C_C is essential in T_C.

(d) All nonsingular right C-modules are projective.

Proof. Once again we organize the proof as a series of lemmas. We stipulate that each of Lemmas P through U contains conditions (a)–(d) in its hypotheses.

Lemma P. Any direct sum of copies of B_A is injective.

Proof. Since T is the endomorphism ring of the nonsingular injective module $S^0 B$, [4, Proposition 1.17] says that T is a regular, right self-injective ring. In light of condition (c), we see from [4, Proposition 1.16] that $Z_r(C) = 0$ and $S^0 C = T$. According to [4, Theorem 2.11], condition (d) implies that C_C is finite dimensional, whence [4, Theorem 1.26] says that T is a semisimple ring.
Now there exist orthogonal idempotents $e_1, \ldots, e_n \in T$ such that $e_1 + \cdots + e_n = 1$ and each $e_i Te_i$ is a division ring. Observing from condition (b) that $S^o B = B$, we see that $B = e_1 B \otimes \cdots \otimes e_n B$, and that each $e_i B$ is an indecomposable A-module, hence an indecomposable $S^o A$-module. According to [4, Proposition 1.15], every finitely generated $S^o A$-submodule of B is a direct summand of B, from which we infer that the modules $e_i B$ are simple $S^o A$-modules.

To show that any direct sum of copies of B_A is injective, it suffices to show that any direct sum of copies of M_A is injective, where M is any one of the modules $e_i B$. Setting $I = \{a \in A \mid Ma = 0\}$, we obtain from Lemma N that $Z_e(A/I) = 0$ and that $S^o (A/I)$ is a simple artinian ring. According to [4, Theorem 1.26], all direct sums of nonsingular injective (A/I)-modules are injective. Inasmuch as M is a nonsingular injective A-module, it must also be a nonsingular injective (A/I)-module; hence any direct sum $\bigoplus M_i$ of copies of M must be injective as an (A/I)-module. Noting that $\prod M_i$ is an (A/I)-module, we infer that $\bigoplus M_i$ is a direct summand of $\prod M_i$, from which it follows that $\bigoplus M_i$ is injective as an A-module.

Lemma Q. If N is any nonsingular right R-module, then NR_{23} is a direct summand of N.

Proof. The module NR_2 must be isomorphic to F/K for some direct sum F of copies of R_2 and some $K \in L^*(F)$. In view of Lemma P, we infer that F is injective as a right (R/R_{23})-module. Inasmuch as $K \in L^*(F)$, it follows that K must be a direct summand of F, and thus that NR_2 is injective as an (R/R_{23})-module. Noting that NR_{12} is an (R/R_{23})-module which contains NR_2, we conclude that $NR_{23} = NR_2 \otimes W$ for some W.

Since R_2 is essential in R_{23}, it follows that R_{23}/R_2 is a singular right R-module. Noting that NR_{23}/NR_2 is a sum of epimorphic images of R_{23}/R_2, we see that NR_{23}/NR_2 is singular. Inasmuch as NR_2 is nonsingular, it follows that NR_2 is essential in NR_{23}. We now take the equation $NR_2 \cap W = 0$ and infer from this that $NR_{23} \cap W = 0$. Checking that $N = NR_{23} + NR_{12} = NR_{23} + W$, we conclude that $N = NR_{23} \otimes W$.

Lemma R. If N is any nonsingular right R-module, then N/NR_{12} is a projective right (R/R_{12})-module.

Proof. In view of condition (d), it suffices to show that N/NR_{12} is nonsingular as an (R/R_{12})-module. Since N_R is nonsingular, there exists a monomorphism $N \to \prod Q_i$, where each Q_i is a copy of $Q = S^o R$. Inasmuch as $R(R/R_{12})$ is finitely generated and projective, we obtain another monomorphism

$N \otimes_R (R/R_{12}) \to (\prod Q_i) \otimes_R (R/R_{12}) \to \prod [Q \otimes_R (R/R_{12})]$.
Thus \(N/NR_{12} \) is embedded in a direct product of copies of \(Q/QR_{12} \); hence it suffices to show that \(Q/QR_{12} \) is nonsingular as an \((R/R_{12})\)-module. Using Proposition 4 to check that

\[
\begin{pmatrix}
S^oA & X \\
S^oB & T
\end{pmatrix}
\]

we infer that it suffices to prove that \(X_C \) and \(T_C \) are nonsingular.

As in Lemma P, we have \(Z_r(C) = 0 \) and \(S^oC = T \), whence \(T_C \) is nonsingular. Now consider any \(\text{element} \ f \in Z(X_C) \). Since \(f \) maps \(S^oB \) into the nonsingular module \(S^oA \), we have \(\ker f \in L^*(S^oB) \). Inasmuch as \(S^oB \) is injective, it follows that \(\ker f = e(S^oB) \) for some indempotent \(e \in T \). We now infer that \(fT \cong (1 - e)T \), from which it follows that \((fT)_c \) is nonsingular, and thus \(f = 0 \). Therefore \(Z(X_C) = 0 \).

Lemma S. Let \(n \) be any positive integer, and let \(K \in L^*(B^n) \). If \(J = \{ x \in C^n \mid xB \leq K \} \), then \(JB = K \).

Proof. As in Lemma P, we have \(Z_r(C) = 0 \) and \(S^oC = T \). In light of condition (d), we see from [4, Theorem 2.5] that \(C \) is right semihereditary and that \(Z[(T \otimes C T)_c] = 0 \). Then [4, Lemma 2.2] says that \(cT \) is flat, while [4, Lemma 1.25] shows that the natural map \(T \otimes C T \rightarrow T \) is an isomorphism.

Inasmuch as \(B_4 \) is injective, we have \(B = S^oB \); hence \(B \) is a left \(T \)-module. Then \(T_B \) is flat because \(T \) is a regular ring, and we infer from the flatness of \(cT \) that \(cB \) must be flat.

Setting \(L = \{ x \in T^n \mid xB \leq K \} \), we note that \(L \) is a right \(T \)-submodule of \(T^n \). We have a monomorphism \(C^n/J \rightarrow T^n/L \), from which we obtain another monomorphism \((C^n/J) \otimes C B \rightarrow (T^n/L) \otimes C B \). Now \((C^n/J) \otimes C B \) is naturally isomorphic to \(B^n/JB \), and we also have natural isomorphisms

\[
(T^n/L) \otimes C T \rightarrow (T^n/L) \otimes T \rightarrow (T^n/L) \otimes C B \rightarrow (T^n/L) \otimes T \rightarrow B^n/LB;
\]

hence we conclude that the natural map \(B^n/JB \rightarrow B^n/LB \) is injective. Therefore \(JB = LB \).

Inasmuch as \(B^n \) is injective and \(K \in L^*(B^n) \), \(K \) must be a direct summand of \(B^n \). Thus there exists an idempotent \(n \times n \) matrix \(p \) over \(T \) such that \(pB^n = K \). Given any \(x \in K \), we can obtain \(x = u_1 b_1 + \cdots + u_n b_n \) for appropriate choices of \(u_i \in T^n \) and \(b_i \in B \). Since each \(pu_i B \leq pB^n = K \), we see that each \(pu_i \in L \). Observing that \(x = px \), it follows that \(x \in LB \). Therefore \(K = LB = JB \).

Lemma T. If \(N \) is any nonsingular right \(R \)-module, then \(\text{Tor}^R_k(N, R/R_{23}) = 0 \).

Proof. We may assume, without loss of generality, that \(N \) is finitely generated, and we shall prove that the map \(N \otimes_R R_{23} \rightarrow N \) is injective. Inasmuch as \(NR_{23} \) is a direct summand of \(N \) by Lemma Q, the map \(f: NR_{23} \otimes_R R_{23} \rightarrow N \otimes_R R_{23} \) is
injective. Noting that R_{23} is idempotent, we see that f is also surjective and hence an isomorphism. Thus it suffices to prove that $NR_{23} \otimes_R R_{23} \rightarrow NR_{23}$ is injective.

Since N is finitely generated, we obtain $NR_{23} \cong R_{23}^n/H$ for some positive integer n and some $H \in \text{L}^*(R_{23})$. We check that $H = (0,0)$ for some $K \in \text{L}^*(B^n)$ and some $J \leq C^n$. Since H is a submodule of R_{23}, we must have $JB \leq K$. Given any $x \in C^n$ for which $xB \leq K$, we see that $(x,J) \in H$, whence $x \in J$. Therefore $J = \{x \in C^n \mid xB \leq K\}$; hence according to Lemma S we obtain $JB = K$.

Now $HR_{23} = (0,0) = H$; hence the map $H/HR_{23} \rightarrow R_{23}^n/(R_{23}^n)R_{23}$ is injective. Inasmuch as R_{23}^n is projective, it follows that $\text{Tor}_1^R(R_{23}/H, R/R_{23}) = 0$, i.e., $\text{Tor}_1^R(NR_{23}, R/R_{23}) = 0$. Therefore $NR_{23} \otimes_R R_{23} \rightarrow NR_{23}$ is injective.

Lemma U. R is a splitting ring.

Proof. We must show that $\text{Ext}_1^R(N, W) = 0$ whenever N is a nonsingular right R-module and W is a singular right R-module. Since it suffices to show that $\text{Ext}_1^R(N, WR_{12}) = 0$ and $\text{Ext}_1^R(N, WR_{12}) = 0$, we may assume that either $WR_{12} = 0$ or $WR_{23} = 0$.

Case I. $WR_{12} = 0$. Consider any short exact sequence $E: 0 \rightarrow W \rightarrow V \rightarrow N \rightarrow 0$ of right R-modules. Since $R(R/R_{12})$ is projective, we obtain another exact sequence $E^*: 0 \rightarrow W \rightarrow V/WR_{12} \rightarrow N/NR_{12} \rightarrow 0$. According to Lemma R, N/NR_{12} is a projective right (R/R_{12})-module; hence E^* splits, from which we infer that E splits.

Case II. $WR_{23} = 0$. Consider any short exact sequence $E: 0 \rightarrow W \rightarrow V \rightarrow N \rightarrow 0$ of right R-modules. Noting from Lemma T that $\text{Tor}_1^R(N, R/R_{23}) = 0$, we obtain another exact sequence $E^*: 0 \rightarrow W \rightarrow V/WR_{23} \rightarrow N/NR_{23} \rightarrow 0$. Inasmuch as R_{23} is a two-sided ideal in $L^*(R)$, [4, Proposition 1.11] says that the singular submodule of any right (R/R_{23})-module is the same whether considered as an (R/R_{23})-module or as an R-module. In particular, W must be a singular (R/R_{23})-module. Considering that NR_{23} is a direct summand of N by Lemma Q, we see that N/NR_{23} is nonsingular as an R-module and hence as an (R/R_{23})-module. Inasmuch as R/R_{23} is a splitting ring by (a), it follows that E^* splits, from which we conclude that E splits.

5. **Conclusion.** Combining Theorems 2, 5, and 6, we obtain the following structure theorem for splitting rings with zero socle:

Theorem 7. Let R be a right nonsingular ring with zero socle. Then R is a splitting ring if and only if R is isomorphic to a ring of the form $(A \oplus C)$, where

(a) A is a semiprime right nonsingular splitting ring.
(b) B is a nonsingular injective right A-module.
(c) C is a unital subring of $T = \text{End}_A(B)$.
(d) C_c is essential in T_c.
(e) All nonsingular right C-modules are projective.
REFERENCES

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF WASHINGTON, SEATTLE, WASHINGTON 98195

Current address: Department of Mathematics, University of Utah, Salt Lake City, Utah 84112