Isomorphisms of the lattice of inner ideals of certain quadratic Jordan algebras
HTML articles powered by AMS MathViewer
- by Jerome M. Katz
- Trans. Amer. Math. Soc. 185 (1973), 309-329
- DOI: https://doi.org/10.1090/S0002-9947-1973-0325716-5
- PDF | Request permission
Abstract:
The inner ideals play a role in the theory of quadratic Jordan algebras analogous to that played by the one-sided ideals in the associative theory. In particular, the simple quadratic Jordan algebras satisfying the minimum condition on principal inner ideals play a role analogous to that of the simple artinian algebras in the associative theory. In this paper, we investigate the automorphism group of the lattice of inner ideals of simple quadratic Jordan algebras satisfying the minimum condition on principal inner ideals. For the case $\mathfrak {H}(\mathfrak {A}{,^ \ast })$ where $(\mathfrak {A}{,^ \ast })$ is a simple artinian algebra with hermitian involution, we show that the automorphism group of the lattice of inner ideals is isomorphic to the group of semilinear automorphisms of $\mathfrak {A}$. For the case $\mathfrak {H}({\mathfrak {Q}_n}{,^ \ast })$ where $\mathfrak {Q}$ is a split quaternion algebra, we obtain only a partial result. For the cases $J = \mathfrak {H}({\mathfrak {O}_3})$ and $J = {\text {Jord}}(Q,1)$ for $\mathfrak {O}$ an octonion algebra, $(Q,1)$ a nondegenerate quadratic form with base point of Witt index at least three and J finite dimensional, it is shown that every automorphism of the lattice of inner ideals is induced by a norm semisimilarity. Finally, we determine conditions under which two algebras of the type under consideration can have isomorphic lattices of inner ideals.References
- E. Artin, Geometric algebra, Interscience Publishers, Inc., New York-London, 1957. MR 0082463
- Wei-Liang Chow, On the geometry of algebraic homogeneous spaces, Ann. of Math. (2) 50 (1949), 32–67. MR 28057, DOI 10.2307/1969351
- Jean Dieudonné, Algebraic homogeneous spaces over fields of characteristic two, Proc. Amer. Math. Soc. 2 (1951), 295–304. MR 42168, DOI 10.1090/S0002-9939-1951-0042168-4 —, La géométrie des groupes classiques, 3rd ed., Springer-Verlag, Berlin, 1971.
- John R. Faulkner, Octonion planes defined by quadratic Jordan algebras, Memoirs of the American Mathematical Society, No. 104, American Mathematical Society, Providence, R.I., 1970. MR 0271180
- Marshall Hall Jr., The theory of groups, The Macmillan Company, New York, N.Y., 1959. MR 0103215
- Nathan Jacobson, Structure and representations of Jordan algebras, American Mathematical Society Colloquium Publications, Vol. XXXIX, American Mathematical Society, Providence, R.I., 1968. MR 0251099
- N. Jacobson, Lectures on quadratic Jordan algebras, Tata Institute of Fundamental Research Lectures on Mathematics, No. 45, Tata Institute of Fundamental Research, Bombay, 1969. MR 0325715
- N. Jacobson and K. McCrimmon, Quadratic Jordan algebras of quadratic forms with base points, J. Indian Math. Soc. (N.S.) 35 (1971), 1–45 (1972). MR 357531
- N. Jacobson and C. E. Rickart, Jordan homomorphisms of rings, Trans. Amer. Math. Soc. 69 (1950), 479–502. MR 38335, DOI 10.1090/S0002-9947-1950-0038335-X
- N. Jacobson and C. E. Rickart, Homomorphisms of Jordan rings of self-adjoint elements, Trans. Amer. Math. Soc. 72 (1952), 310–322. MR 46346, DOI 10.1090/S0002-9947-1952-0046346-5
- Kevin McCrimmon, A general theory of Jordan rings, Proc. Nat. Acad. Sci. U.S.A. 56 (1966), 1072–1079. MR 202783, DOI 10.1073/pnas.56.4.1072
- Kevin McCrimmon, The Freudenthal-Springer-Tits constructions of exceptional Jordan algebras, Trans. Amer. Math. Soc. 139 (1969), 495–510. MR 238916, DOI 10.1090/S0002-9947-1969-0238916-9
- Kevin McCrimmon, Inner ideals in quadratic Jordan algebras, Trans. Amer. Math. Soc. 159 (1971), 445–468. MR 279145, DOI 10.1090/S0002-9947-1971-0279145-1
Bibliographic Information
- © Copyright 1973 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 185 (1973), 309-329
- MSC: Primary 17A15
- DOI: https://doi.org/10.1090/S0002-9947-1973-0325716-5
- MathSciNet review: 0325716