Square integrable representations of nilpotent groups
HTML articles powered by AMS MathViewer
- by Calvin C. Moore and Joseph A. Wolf
- Trans. Amer. Math. Soc. 185 (1973), 445-462
- DOI: https://doi.org/10.1090/S0002-9947-1973-0338267-9
- PDF | Request permission
Abstract:
We study square integrable irreducible unitary representations (i.e. matrix coefficients are to be square integrable mod the center) of simply connected nilpotent Lie groups N, and determine which such groups have such representations. We show that if N has one such square integrable representation, then almost all (with respect to Plancherel measure) irreducible representations are square integrable. We present a simple direct formula for the formal degrees of such representations, and give also an explicit simple version of the Plancherel formula. Finally if $\Gamma$ is a discrete uniform subgroup of N we determine explicitly which square integrable representations of N occur in ${L_2}(N/\Gamma )$, and we calculate the multiplicities which turn out to be formal degrees, suitably normalized.References
- L. Auslander, L. Green, and F. Hahn, Flows on homogeneous spaces, Annals of Mathematics Studies, No. 53, Princeton University Press, Princeton, N.J., 1963. With the assistance of L. Markus and W. Massey, and an appendix by L. Greenberg. MR 0167569
- J. Dixmier, Sur les représentations unitaires des groupes de Lie nilpotents. II, Bull. Soc. Math. France 85 (1957), 325–388 (French). MR 95426
- J. M. G. Fell, The dual spaces of $C^{\ast }$-algebras, Trans. Amer. Math. Soc. 94 (1960), 365–403. MR 146681, DOI 10.1090/S0002-9947-1960-0146681-0
- Harish-Chandra, Representations of semisimple Lie groups. II, Trans. Amer. Math. Soc. 76 (1954), 26–65. MR 58604, DOI 10.1090/S0002-9947-1954-0058604-0
- Roger Howe, On Frobenius reciprocity for unipotent algebraic groups over $Q$, Amer. J. Math. 93 (1971), 163–172. MR 281842, DOI 10.2307/2373455
- A. A. Kirillov, Unitary representations of nilpotent Lie groups, Uspehi Mat. Nauk 17 (1962), no. 4 (106), 57–110 (Russian). MR 0142001 A. Kleppner and R. Lipsman, The Plancherel formula for group extensions (to appear).
- George W. Mackey, Induced representations of locally compact groups. I, Ann. of Math. (2) 55 (1952), 101–139. MR 44536, DOI 10.2307/1969423
- Calvin C. Moore, Decomposition of unitary representations defined by discrete subgroups of nilpotent groups, Ann. of Math. (2) 82 (1965), 146–182. MR 181701, DOI 10.2307/1970567 —, The Plancherel formula for non-unimodular groups, Abstract for the Internat. Congress on Functional Analysis, University of Maryland, College Park, Md., 1971.
- L. Pukánszky, On the characters and the Plancherel formula of nilpotent groups, J. Functional Analysis 1 (1967), 255–280. MR 0228656, DOI 10.1016/0022-1236(67)90015-8 —, Leçons sur les représentations des groupes, Monographie de la Société Mathématique de France, no. 2, Dunod, Paris, 1967. MR 36 #311.
- L. Pukanszky, Unitary representations of solvable Lie groups, Ann. Sci. École Norm. Sup. (4) 4 (1971), 457–608. MR 439985
- Leonard F. Richardson, Decomposition of the $L^{2}$-space of a general compact nilmanifold, Amer. J. Math. 93 (1971), 173–190. MR 284546, DOI 10.2307/2373456
- Marc A. Rieffel, Square-integrable representations of Hilbert algebras, J. Functional Analysis 3 (1969), 265–300. MR 0244780, DOI 10.1016/0022-1236(69)90043-3
- I. Satake, Unitary representations of a semi-direct product of Lie groups on $\bar \partial$-cohomology spaces, Math. Ann. 190 (1970/71), 177–202. MR 296213, DOI 10.1007/BF01433209
- Nobuhiko Tatsuuma, Plancherel formula for non-unimodular locally compact groups, J. Math. Kyoto Univ. 12 (1972), 179–261. MR 299729, DOI 10.1215/kjm/1250523567
- A. A. Kirillov, Plancherel’s measure for nilpotent Lie groups, Funkcional. Anal. i Priložen. 1 (1967), no. 4, 84–85 (Russian). MR 0224748
Bibliographic Information
- © Copyright 1973 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 185 (1973), 445-462
- MSC: Primary 22E45; Secondary 22E25
- DOI: https://doi.org/10.1090/S0002-9947-1973-0338267-9
- MathSciNet review: 0338267