Hermitian operators and one-parameter groups of isometries in Hardy spaces
HTML articles powered by AMS MathViewer
- by Earl Berkson and Horacio Porta
- Trans. Amer. Math. Soc. 185 (1973), 331-344
- DOI: https://doi.org/10.1090/S0002-9947-1973-0338833-0
- PDF | Request permission
Abstract:
Call an operator A with domain and range in a complex Banach space X hermitian if and only if iA generates a strongly continuous one-parameter group of isometries on X. Hermitian operators in the Hardy spaces of the disc $({H^p},1 \leq p \leq \infty )$ are investigated, and the following results, in particular, are obtained. For $1 \leq p \leq \infty ,p \ne 2$, the bounded hermitian operators on ${H^p}$ are precisely the trivial ones—i.e., the real scalar multiples of the identity operator. Furthermore, as pointed out to the authors by L. A. Rubel, there are no unbounded hermitian operators in ${H^\infty }$. To each unbounded hermitian operator in the space ${H^p},1 \leq p < \infty ,p \ne 2$, there corresponds a uniquely determined one-parameter group of conformal maps of the open unit disc onto itself. Such unbounded operators are classified into three mutually exclusive types, an operator’s type depending on the nature of the common fixed points of the associated group of conformal maps. The hermitian operators falling into the classification termed “type (i)” have compact resolvent function and one-dimensional eigenmanifolds which collectively span a dense linear manifold in ${H^p}$.References
- Earl A. Coddington, An introduction to ordinary differential equations, Prentice-Hall Mathematics Series, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1961. MR 0126573
- Nelson Dunford and Jacob T. Schwartz, Linear Operators. I. General Theory, Pure and Applied Mathematics, Vol. 7, Interscience Publishers, Inc., New York; Interscience Publishers Ltd., London, 1958. With the assistance of W. G. Bade and R. G. Bartle. MR 0117523
- Peter L. Duren, Theory of $H^{p}$ spaces, Pure and Applied Mathematics, Vol. 38, Academic Press, New York-London, 1970. MR 0268655
- Frank Forelli, The isometries of $H^{p}$, Canadian J. Math. 16 (1964), 721–728. MR 169081, DOI 10.4153/CJM-1964-068-3
- Maurice Heins, Complex function theory, Pure and Applied Mathematics, Vol. 28, Academic Press, New York-London, 1968. MR 0239054
- Sigurđur Helgason, Differential geometry and symmetric spaces, Pure and Applied Mathematics, Vol. XII, Academic Press, New York-London, 1962. MR 0145455
- Einar Hille and Ralph S. Phillips, Functional analysis and semi-groups, American Mathematical Society Colloquium Publications, Vol. 31, American Mathematical Society, Providence, R.I., 1957. rev. ed. MR 0089373
- Kenneth Hoffman, Banach spaces of analytic functions, Prentice-Hall Series in Modern Analysis, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1962. MR 0133008
- Karel de Leeuw, Walter Rudin, and John Wermer, The isometries of some function spaces, Proc. Amer. Math. Soc. 11 (1960), 694–698. MR 121646, DOI 10.1090/S0002-9939-1960-0121646-9
- G. Lumer, Semi-inner-product spaces, Trans. Amer. Math. Soc. 100 (1961), 29–43. MR 133024, DOI 10.1090/S0002-9947-1961-0133024-2
- G. Lumer and R. S. Phillips, Dissipative operators in a Banach space, Pacific J. Math. 11 (1961), 679–698. MR 132403
- Allen L. Shields, On fixed points of commuting analytic functions, Proc. Amer. Math. Soc. 15 (1964), 703–706. MR 165508, DOI 10.1090/S0002-9939-1964-0165508-3
- Ivan Vidav, Eine metrische Kennzeichnung der selbstadjungierten Operatoren, Math. Z. 66 (1956), 121–128 (German). MR 84733, DOI 10.1007/BF01186601
- A. Zygmund, Trigonometric series. 2nd ed. Vols. I, II, Cambridge University Press, New York, 1959. MR 0107776
Bibliographic Information
- © Copyright 1973 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 185 (1973), 331-344
- MSC: Primary 47D10; Secondary 47B37
- DOI: https://doi.org/10.1090/S0002-9947-1973-0338833-0
- MathSciNet review: 0338833