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ABSTRACT. Let <D(z) = 2? ßjiJ have radius of convergence r (0 < #• < co) and no

singularities other than poles on the circle \z\ = r. A complete solution is obtained for the

infinite order differential equation (•) 2? ßju(jXU) = g(z)- It is shown that (*) possesses a

solution if and only if the function g has a polynomial expansion in terms of the Appell

polynomials generated by 4>. The solutions of (•) are expressed in terms of the coefficients

which appear in the Appell polynomial expansions of g. An alternate method of solution

is obtained, in which the problem of solving (*) is reduced to the problem of finding a

solution, within a certain space of entire functions, of a finite order linear differential

equation with constant coefficients. Additionally, differential operator techniques are used

to study Appell polynomial expansions.

1. Introduction. Let $(z) = 2o° ßjzj nave radius of convergence r (0 < r

< oo) and no singularities other than poles on the circle \z\ = r. The differential

equation we study is

(1.1) 4>(Z))m = g,

where D denotes the derivative operator and $(Z)) is the operator which

transforms the analytic function u into

(1-2) 2 £/«0)(4

We take for the domain of $(Z>) the family of entire functions u such that (1.2)

is uniformly convergent on every compact set. That very little is lost by this

requirement is apparent from the following lemma.

Lemma 1.1. If v is analytic on a region fi and 2o° ßjVU)(z) is uniformly

convergent on some open subset ofQ, then v is the restriction to fl of an entire function

u, and 2o° ßju(JKz) is uniformly convergent on every compact set.

In the present paper, we are able to determine both the domain and range of

$(D) and to obtain a complete solution of (1.1). There is a deep connection

between this problem and the problem of expanding an entire function in an
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464 J. D. BUCKHOLTZ

infinite series of Appell polynomials. The Appell polynomials generated by the

function 4> are given by

"*W=2A-A-      k = 0,l,2.
j-0 J-

An entire function g is said to have a {irk} expansion if there is a complex

sequence « = {«*}" such that 2*°-o hkirk(z) is uniformly convergent on compact

sets to g(z). We denote by £ the family of entire functions g which possess {irk}

expansions.

Let l/aq, 1 < q < X, denote the (distinct) poles of q> on }z\ = r, and let m(q)

denote the order of the pole 1/a,. We denote by H the collection of complex

sequences « such that each of 2?-o (**?h '^i** converges, 1 < q < X, and we

let 11 denote the family of entire functions u such that {la^HO)}" belongs to H.

Note that every member of Hx has exponential type r or less, and that every

function of exponential type less than r belongs to H.

Theorem 1.1. The operator 4>(D) has domain 11 and range £. If the function g G £

has the Appell expansion g(z) = 2"-o hkTrk(z), then the function

u(z) =   2  hk-rj
k-0     K--

satisfies $(D)u = g. Conversely, if g G £and u satisfies $(D)u = g, then g has the

Appell expansion

g(z) =   5   «<*>(0K(2).

Theorem 1.1 reduces the problem of solving 4>(Z))w = g to the problem of

expanding g in an Appell series. This problem was solved in [2] and [3]. Before

discussing its solution, we consider the homogeneous equation $(D)u = 0. Let

{w,}i_, denote the zeros (according to multiplicity) of 4> in the open disk \z\ < r,

and set 7¿(z) = TT/-i (z - *>,), with the convention that 75(2) = 1 if $ is zero

free in\z\ < r.

Theorem 1.2. <b(D)u = 0 if and only if T0(D)u = 0.

In view of Theorem 1.1, u satisfies $(D)u = 0 if and only if 2*°-o "^'(OHkfc)

is uniformly convergent to 0 on every compact set. The Appell series with this

property were characterized in [3]. Theorem 1.2 is, therefore, an immediate

consequence of Theorem C of [3].

Let $(2) = T(z)y(z), where F is a polynomial, with no zero outside the closed

disk \z\ < r, and <p has no zero in \z\ < r. Set

x
QXz) = JJ (1 - a,:)™"«'»'"-",

7-1
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APPELL POLYNOMIALS 465

where m = maX|<?<xm(<7) denotes the largest order of a pole of 0 on |z| = r.

We denote by 9 the linear space of entire functions / which satisfy

lim r-"(Z>7)(0) = lim r''nm-x(DnQ(D)f)(0) = 0.
n—»oo n—»oo

In the special case that 3> has only simple poles on \z\ = r, we have m = 1,

Q(z) = 1, and 9 is the space of entire functions / which satisfy

(1.3) /W(0) = o(rn),       « -» oo.

In general, (1.3) is a necessary condition that/ G 9 and the condition

/<">(0) = o(r" /«"-'),       n — oo,

is sufficient.

It was shown in [3] that £ is the image of 9 under the differential operator

T(D). In particular, if <ï> is zero free in the closed disk \z\ < r, then £ is the space

9. We shall prove here that £ = 9 under the much weaker condition that 4» has

no zero on the circle \z\ = r. This is an immediate consequence of the following

result, together with the observation that 73 = T if $ has no zero on the circle

W = r.

Theorem 13. The operator T0(D) maps 9 onto 9.

Corollary 1.1. Let Tx(z) = T(z)/Ta(z). The operator TX(D) is a 1-1 linear map of

9 onto £.

As a consequence of Corollary 1.1, we note that the space £ is completely

determined by the zeros and poles of $ on its circle of convergence.

It is not hard to show that £ is contained in 9, and, therefore, that every

member of £ has exponential type r or less. It has been known for a long time [4]

that every function of exponential type less than r possesses a {%} expansion. Our

differential operator approach yields a slightly stronger version of this important

result. Let d denote the largest integer which is the multiplicity of a zero of Tx (if

Tx is constant, we take d = 0).

Theorem 1.4. If d > 0 and m = 1, then £ contains every entire function g such

that

oo _</-!

2 lg("'(o)lV<00-

If m*> 1 or d — 0, then £ contains every entire function g such that

g<"'(0) = 0(r«/«m+''-1),       « ->• oo.

In either case, £ contains every entire function g such that

g(«)(0) = o(r"/nm+d),       « -^ oo.
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466 J. D. BUCKHOLTZ

The results in [2] pertaining to mapping properties of infinite matrices

(regarded as sequence-to-sequence operators) possess differential operator ana-

logues. Let 9(z) = l/<p(2) = 2,"o ajZj, and note that 6 is analytic in the closed

disk \z\ < r. This insures that the domain of the differential operator 6(D)

includes all entire functions of exponential type r or less.

Theorem 1.5. The operator <p(D) has domain 11 and is a 1-1 linear map of 11 onto

9. Its inverse is the restriction of 6(D) to 9. The operator $(/)) has domain 11 and

satisfies ®(D)u = T(D) {<p(D)u}for every u G 11.

As a consequence of Theorem 1.5, we see that the differential equation

(p(D)u = f has a solution if and only if / G 9. If / G 9, then one obtains the

unique solution of

(1.4) ?(£>)«=/

by "dividing" both sides of (1.4) by <p(D), i.e., u = 6(D)f.

Theorem 1.5 also allows us to obtain a solution of <Ï>(Z))m = g by reducing it

to a finite order linear differential equation with constant coefficients. The

following is an easy consequence of Theorem 1.5.

Theorem 1.6. Suppose that g is an entire function. The infinite order differential

equation

(1.5) <D(D)« - g

has a solution if and only if the differential equation

T(D)f=g

has a solution f which belongs to 9. Iff G 9 and T(D)f = g, then u — 6(D) fis a

solution 0/(1.5). Conversely, if u is a solution of (1.5), then the function f = <p(Z))«

belongs to 9, satisfies T(D)f = g, and has the property that u = 6(D) f.

Theorem 1.6, while very nearly a restatement of Theorem 1.1, does not depend

on Appell polynomials, and is, to that extent, a more "natural" solution of (1.5).

2. Proofs of Theorems 1.1 and 13. It was established in [2] that a sequence h

belongs to H if and only if each of the series 2," k ßj-kfy, 0 < k < 00, converges

(the additional hypothesis in [2] that 0 have no zeros in the disk \z\ < r was not

used in the proof of this).

Lemma 2.1. Suppose v is analytic on some region containing the complex number

w, and

(2.1) 5 ßjVW(z)

is uniformly convergent on a neighborhood of w. Then the sequence {v^^(w)}q

belongs to H, and v is the restriction of an entire function.
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APPELL POLYNOMIALS 467

Proof. Let k denote a nonnegative integer, differentiate (2.1) k times, and set

z = w. Therefore

2 ßjv^*kKw) = 2 ßj-k^(w)
j-o j~k

converges, so that {f^'M}" belongs to H. From the definition of H, we obtain

(2.2) lim sup |t»0)(w)f/-' < r.
/-»ao

Therefore the series

u(z) = 2 vU>(w)(^¥-
j-0 J-

defines an entire function u which agrees with v on a neighborhood of w. Note

that (2.2) implies that u is of exponential type r or less.

Theorem 2.1. Ifu is entire, w is a complex number, and {'/')(w')}o° belongs to H,

then

2 ßj^Kz) = 2 «^(wHÍ* - w)
j-0 *-o

/or all z, and both series are uniformly convergent on every compact set.

Proof. It is no loss of generality to take w = 0. To see this, replace z by z + w

and let ux (z) = u(z + w).

Taking w = 0, we have that {u0)(w)}o* = {'/''(O)}* belongs to ZZ, and it

follows from this [2] that 2*°-o ^k)(0}iTk(z) is uniformly convergent on compact

sets to an entire function g. To complete the proof, we show that

lim(g(z)-¿/?,.MO>(2)) = 0
»-»00 l^ y_0 J

uniformly on compact sets.

For notational simplicity, set hk = k(*'(0). We have

2 ßju^(z) =2/8,-2 hkT¡^r^
j-o j-o    k-j   yk -j)\

oo min {n,k} -k-j

—    2    hk        2        ßjij,  _   ;\l
*_0 y-0 (Ai;!

= 2 W*) +  2 hk ¿ ßjjj^Yx-
k-o k-n+i    >-o y(.K -yj!

r*-./ » » »*->
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468 J- D. BUCKHOLTZ

Therefore

g(z) - 2 ßjuW(z) =    2   **{*%(*) - 2 ftTCTtf)

**-/
—    2    «t    2    ßj7T~J\i

To estimate this quantity, we use the poles of $ on \z\ = r to obtain an

asymptotic estimate for ßj. For 1 < q < A, let

»-1MÄV«-

,f , (1 - aqz)^+x-'

denote the sum of the negative powers in the Laurent expansion of $ at a~x.

Then

x   "■<?) r (a)

*>-33 (,-ff¿>.~+«.(»
where $2(z) = 2," o jS/^' 's analytic in a disk |2| < rx,rx> r. We then have

X    m(q)

J

Therefore

oo A: 2*-^ ^    "^

2  A* 2 ßjjr—^ - *«(*) +22 i/,„(4

where *„(*) = 2T-+I h 2¿^i #z*->/(* -/)! and

The proof that lim„_00/?n(2) = 0 uniformly on compact sets is straightforward

and is omitted. The following lemma completes the proof of Theorem 2.1.

Lemma 2.2.7/1 < q < X and 1 < t < m(q ), then lim,,.,,» Uq,„(z) = 0 uniform-

ly on compact sets.

Proof of Lemma 2.2. From [2, Lemma 2.7] we have

\uqlM < v(z) suP  s (* +mr\q)_:!Wl,
o</<oo *-n+i+/ \   m(q) — I    / *     |

where V(z) denotes the total variation of the sequence {yk}f-n+x given by

*    (j + m(q) -t\(k + m(q) - 1 \~x (z/a,)"''

yk - À\ \   m(q) - t   )\   m(q) - 1    )    (k -/)! "
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APPELL POLYNOMIALS 469

Replace the summation index j by k—j and set y'k = yk+n+x. After some

simplification, one obtains

y'k - | (
j-0 \

k + n + 1 -/ + «t(o) t\/k + n + m(q)\-i(z/aq)J

)\   m(q)-\    )       j\

The sequence {y'k}^ has total variation V(z); also, \y'0\ = C^iSW"*)C*^i>""■

Ç 1. Set

fk + « + 1 -/ + m(o) -A/Hut «1(9 )_/* + «+!-/ + m(q) - t\/k

**~\ m(q)-t )\   m(q)
«).     o</< *<  CO.

Then

and

u+i

Therefore

(z/a,)**'
<

(k + 1)!

KW = ból+ 2 \y'k-yUA
k-0

sKT k/«,K
— 1 + 2  /i, ,  i\t + 22  -**; — **+i.i      ¿<

k=o (k + 1)!     k=oj=o *     J-

» u/a y °°
= exp|z/a,| + 2 —jf- 2 ky - xk+XJ\.

j=0      J-       k-j

The method used to prove Lemma 3.2 of [2] allows one to establish that

2?=/' \xkj ~ xk+XJ\ < 2. Therefore V(z) < 3exp\z/aq\ = 3e'"'. This completes

the proof of Lemma 2.2 and also the proof of Theorem 2.1. Note that Lemma 1.1

is a consequence of Lemma 2.1 and Theorem 2.1.

Proof of Theorem 1.1. It follows from Theorem 2.1 (with w = 0) that 11 is

contained in the domain of <t>(D), and from Lemma 2.1 (with w = 0) that 7/

contains the domain of ®(D). Therefore the domain of $(Z>) is <U; using Theorem

2.1 again, we see that the range of $(Z>) is contained in £. Suppose now that

g E £. Then there is a complex sequence « such that g(z) = 2*°=o hkirk(z)

uniformly on compact sets. From the Convergence Theorem in [2] it follows that

« G H. Consequently the function u(z) = 2*°-o hkzk/k\ belongs to 'U, and from

Theorem 2.1 we have

mo)u)(z) - 2 t.(*>(0K(z) = 2 hkvk(z) = g(z).
*=0 *=0
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470 J. D. BUCKHOLTZ

Therefore the range of $(£>) is £. Suppose now that g G £ and that u satisfies

$(D)u = g. From Theorem 2.1 we obtain

g(z) = (*(D)u)(z) = 2 "(*>(0K(4
*-0

and the proof of Theorem 1.1 is complete.

Proof of Theorem 13. If 23(2) = 1, there is nothing to prove, since in this case

%(D) = /, the identity operator. If T0(z) = üí-i (z - w¡), s > 1, we have the

operator factorization 1¿(D) = FJ'-i (D ~ w¡0> so that it is sufficient to prove

that, if |w0| < r, then D — w0I maps 9 onto 9. Clearly D - w0I maps 9 into 9,

since 9 is a linear space which is closed under differentiation. If / G 9, then so

does 2y" ifV~xKQ)zJ/ßi therefore we can exclude the case w0 = 0 and reduce

the problem to that of showing that every F G 9 is the image of some / G 9

under the transformation wD - /, where w is a complex constant such that

M > l/r.
Suppose that F G 9; the differential equation with boundary condition

(2.3) w/'-/=F,      /(0) = 0,

has a unique solution / We shall show that this function belongs to 9. Set

Q(z) = 2J-0 C,z' ; it is easy to verify that a function g belongs to 9 if and only if

(2-4) Hm r-Y">(0) = Um «""'r'" 2 C,g<"+'>(0) = 0.
n—»00 n—*oo ¡^q

Let k denote a positive integer, differentiate (2.3) A: times, multiply by wk, and

set 2 = 0. This yields

(2.5) w*+,/(*+I)(0) - w*/(t)(0) = w*F<*)(0).

. Since/(0) = 0, we have wf'(0) = F(0), which corresponds to k = 0 in (2.5). If

we sum equation (2.5) over 0 < k < n, we obtain

w"/W(0) = 2 w*F<*>(0).

Therefore the solution of (2.3) satisfies

/(n)(0) = 2 w*-"F<*>(0),       1 < n < 00.

To complete the proof, we use the fact that (2.4) holds if g = F to prove that

(2.4) holds if g = /
We have

r-»/M(0) = 2 M*-"r-*F<*>(0).

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



APPELL POLYNOMIALS 471

Since \rw\ > 1, the infinite matrix

M„k = (rw)k-\       0<k<n,

= 0, k > n,

transforms sequences with limit 0 into sequences with limit 0. Therefore

lim^r-'F^O) = 0 implies lim^r-"/«^) = 0.

The remainder of the proof is similar in nature but more difficult. We again

use the fact that sufficient (and also necessary) conditions for an infinite matrix

N to transform sequences with limit 0 into sequences with limit 0 are that

(0 Hm N„k = 0,       k = 0, 1, 2_
n-»oo

and

(») sup    2 \Nnk\ < oo.
0<n<x k-0

We have

T T n+f-1

nm-\r-n 2 c,/("+')(0) = nm-xrn 2 c, 2 w*-»-'F(*>(0).
(-0 (=0 *-0

Now

t n+t-l t n-1

2 C,  2   w*-"-'F<*»(0) = 2 C,  2  w*-"F(*+')(0)
(-0 k-0 t=0        *=-f

= 2 c, 2 ^-«f^'Ho) + 2 c, 2 w*-"F<*+"(o).
r=-0       t—t t-0       k-\

It is easy to show that

T o
lim nm-xrn 2 C, 2  -v*-"F<*+''(0) = 0.
n-»oo ,_o        *=-(

Now

„m-irn 2 c, 2 w*-»F<*+')(0) = «-"-'M"" 2 »v* 2 C,F(*+')(0)
»=0        k-\ k-l 1-0

_m-l   n-1 (rwik t
= ^2 T^T^""1'--* 2 C,F<*+'>(0)

= 2 (™)k~n(zf Um-lr-k 2 C,F<*+"(0)1

To complete the proof, it suffices to show that the infinite matrix
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472 J. D. BUCKHOLTZ

Nnk = 0 if k = 0 or k > n,

= (rw)k-"(n/k )"■-'       if 1 < k < n,

has properties (i) and (ii). Property (i) is obvious. To establish (ii), set p = |nv|_l

< 1. Then

o» "-1 / n\"

Since k(n - k ) is least at k = 1 and k = n — 1, we have

im~\ n— 1

*=0
2 l<vj < (■rLi)m ' 2 k»-xpk < 2"-' 2 Jfc'-V,

and this completes the proof.

Proof of Corollary 1.1. The operator T(D) maps 9 onto £ and has the

factorization T(D) = Tx(D){Tj(D)}. In view of Theorem 1.3, we need only show

that the restriction of TX(D) to 9 is 1-1. If 7¡'(2) is a constant, there is nothing to

prove. If not, I¡(D) has a factorization into differential operators of order 1. It is

easily verified that these differential operators are 1-1 on 9, and this completes

the proof.

3. Proofs of Theorems 1.5 and 1.6. Let v(z) = vx(z)v2(z), where vx and v2 are

functions analytic in a neighborhood of 0. For convenience, we shall sometimes

use vx(D)v2(D) to denote the operator v(D). Since we shall always denote

operator composition by vx(D){v2(D)}, no confusion will result.

Lemma 3.1. If vx and v2 are functions analytic in the closed disk \z\ < r, then

vx(D){v2(D)f} = {vx(D)v2(D)}ffor every entire function f of exponential type r or

less.

Proof. Suppose that / is of exponential type r or less. For 8 > 0 we have

lim sup \fU)(0)\x/j < r < r(l + 5).

Therefore the quantity K6 = sup0<><QO|/^)(0)|/{r(l + 6)}J is finite. Consequent-

ly,

l/(t)WI<.| I/O)(0)ItJ^)ï

< A-aMl + 8)}k J, {r(l + 5)}^*^^^

= Ki{r(l+«)}*exp{r(l+ô-)|2|}.
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Suppose that v is analytic in the closed disk \z\ < r. Choose 8 > 0 so that v is

analytic in the closed disk \z\ < r(l + 8). The previous estimate insures that

00    n(*)(0)

{v(D)f}(z) = 2 v-¡Pf™(?)
k—O      *■•

is uniformly convergent on every compact set. Note also that

00  lt/(*)(0)l
\{v(D)f}(z)\ < Ksexp{r(l + S)\z\} 2 ^rP(r(l + «)}*,

so that v(D)f is of exponential type r(l + 8) or less; consequently v(D)f is of

exponential type r or less since 8 is arbitrary.

Now

MD)MD)fWz) - jt ^ Î 0/»'%)

_/_0      7!       k-j\K      J)1

= {{t»,(Z))i»2(Z))}/}(z),

provided that the interchange in order of summation is valid. To see that this is

the case, note that

does not exceed

ttá-PKi + ou i (s ^ ¥35r)w+«»'•

which is finite, provided that 5 is chosen so that both i», and v2 are analytic in

the closed disk \z\ < r(\ + 8).

Lemma 3.2. If vx is polynomial and v2 is analytic in a neighborhood of 0, then

vx(D){v2(D)f} = {vx(D)v2(D)}ffor every fin the domain of v2(D).

Proof. The interchange in order of summation is trivial to verify in this case,

since the "outer" sum is finite.

Theorem 3.1. IfuEH, then 0(D){<p(D)u} = u.

Proof. Set P(z) = nj-i (1 - aqz)n*i) and note that the functions vx = 0/P,

v2 = P, and i»3 = Pep are analytic in the closed disk \z\ < r. In the proof of
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Theorem 1.1 the possibility that T(z) = 1 is not excluded. Therefore <p(D) has

domain 11 and range 9. From Lemma 3.2 we have P(D){<p(D)u} = v}(D)u. The

function/ = tp(D)u is of exponential type r or less; from Lemma 3.1 we obtain

vx(D){P(D)f} = 6(D) f = 6(DMD)u}.

Since u is of exponential type r or less, we have

6(D){<p(D)u} = vx(D){P(D)f} = vx(D){P(D){<¿D)u}}

= vx(D){v3(D)u} = {vx(D)Vi(D))u = u.

Proof of Theorem 1.5. Most of Theorem 1.5 follows from Theorem 1.1, since

in Theorem 1.1 the case T(z) = 1 is not excluded, and in this case <& = <p. The

factorization 3>(D)m = T(D){<p(D)u} is a consequence of Lemma 3.1. That <p(/J>)

is 1-1 follows from Theorem 3.1, as does the assertion that the inverse of <p(D) is

the restriction to 9 of 6(D).

Proof of Theorem 1.6. The second sentence of Theorem 1.6 is equivalent to the

assertion that £ is the range of $(/)), and this has already been established.

Suppose that/ G 9 and T(D)f = g. Set u = 9(D)f. From Theorem 1.5 we have

u G 11 and 4»(Z))m = T(D){<p(D)u} = T(D)f = g.
Suppose now that u is such that <b(D)u = g. From Theorem 1.1 we have

u G 11. Therefore the function/ = <p(D)u belongs to 9 by Theorem 1.5. Also

from Theorem 1.5 we obtain u = 6(D)f and

g = $(£)„ = T(D){<p(D)u} = F0>)/,

which completes the proof.

4. Proof of Theorem 1.4. Suppose that m = 1 and d > 0. Set

Since S is zero free and has only poles on its circle of convergence, the operators

S(D) and TX(D) are controlled by Theorem 1.5. Let 1l(S) and 9(5) denote the

spaces obtained from 11 and 9 by replacing $ by S. Since m = 1, 9 is the

collection of all entire / such that

(4.1) /W(0) = o(r"),      « ^ oo.

Every member of 9(S) must satisfy (4.1) and one other growth condition;

therefore 9(S) is contained in 9. If one writes out explicitly the condition that a

function g belongs to 1l(S), it follows easily that 1l(S) contains every entire g

such that

(4-2) 2 Wn)(0)\C- < oo.
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From Theorem 1.5 we see that TX(D) maps 9(S) onto ^(S). Therefore every g

which satisfies (4.2) is the image under TX(D) of an/which belongs to 9(S), and

therefore to 9. Since £ is the image of 9 under TX(D), the proof of the first half

is complete.

Suppose that m > 1. If d = 0, there is nothing to prove, since in this case

£ = 9. Since no pole of S on \z\ = r is of order greater than d, we have the

estimate

S^(0)/j\ =sj = 0(j"-x/rJ),      j -* oo.

Since m > 2, the growth condition gV}(0) = o(rJ/jm*d~x),j -» oo, implies

(4.3) g0)(0) - €fyJ/jM\      /-»oo.

We see from Theorem 1.1 that (4.3) is sufficient to guarantee that g belongs to

<U(S), the domain of S(D). Set / = S(D)g. From Lemma 3.2 we have g

= Tx(D){S(D)g} = Tx(D)f. To complete the proof, we need only show that

/ G 9. We establish this by showing that/<")(0) = o(r"/«m-1)> » -» ».

We have

/«(O) = (s(D)gy»)(o) = 2 s,-n¿r0,(o).
j-n

Therefore

There exist constants JÇj and tf2 such that, if 1 < n <j, then

Ç+mm)<Kdm    and   1^,1 £ KJ»/rJ-.

Therefore

and we have

If ™"V,<0)s'~'Í s ̂ k/^-vkoX

f:-i>w»iSfsl1>'
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Since \imj-.x(jm+d~] /rJ)gül(0) «■ 0, the proof is complete.

5. An example. Take $(2) = (1 + 2)2/(l - 2). Then 9 is the set of entire/such

that/<">(0) = o(l), « -* 00, and

*-2 32*"' 2*

"'(2) = 4^J// + Fi)! + H'

It follows from the Convergence Theorem in [2] that convergence of

2"=o hk-iTk(z) for one value of 2 implies uniform convergence on every compact

set. The sequence {rrk}ô is biorthogonal to the sequence of linear functionals

{Alo* given by

A(g) = 2 HV-*(2/ - 2k + l)gU>(0),       * = 0, 1, 2, • • •.
/-*

Every entire g for which the functionals £k(g) are defined has the formal basic

series expansion

g(z) ~ 2 A(gH(z).
k=0

(We use the term "basic series" in the sense of Whittaker [5].) It follows from [3,

Theorem C] that the {tTk} expansions are unique. In spite of this, not every

convergent {irk} expansion is a basic series expansion. To see this, take

g(2)= 2 (2^ + 87 + 7)^

and note that g =/" + 2/' +/, where f(z) — (e' - l)/22. Since / G 9, it

follows from [3, Theorem B] that g has the convergent {irk} expansion

g(z) = 2 {/«>(0) - /<->(o)K(2) - 2 2(k+t¿ + 2y

On the other hand, the series defining -Ck(g) is easily seen to be divergent for

every k, 0 < k < 00.
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