ALMOST EVERYWHERE CONVERGENCE OF VILENKIN-FOURIER SERIES

BY

JOHN GOSSELIN

ABSTRACT. It is shown that the partial sums of Vilenkin-Fourier series of functions in $L^q(G)$, $q > 1$, converge almost everywhere, where G is a zero-dimensional, compact abelian group which satisfies the second axiom of countability and for which the dual group X has a certain bounded subgroup structure. This result includes, as special cases, the Walsh-Paley group 2^n, local rings of integers, and countable products of cyclic groups for which the orders are uniformly bounded.

Introduction. Let X denote the dual group of a compact, abelian, zero-dimensional group G, which satisfies the second axiom of countability. Then X is a discrete, countable, abelian, torsion group. N. Ja. Vilenkin [14] showed X is the union of subgroups $\{X_s\}_{s=0}^{\infty}$, $X_s \subset X_{s+1}$, such that X_{s+1}/X_s is of prime order p_{s+1}. Vilenkin also placed an ordering on X. Such a pair (G,X) is called a Vilenkin system. A Vilenkin system is said to be bounded if $\sup_s p_s < \infty$.

For $f \in L^1(G)$, let S_nf denote the nth partial sum of the Fourier series with respect to X. In this work we prove that S_nf converges to f almost everywhere for each f in $L^q(G)$, $1 < q \leq \infty$. Special cases of this result include the Walsh-Paley series [11], Fourier series on the ring of integers of a local field [8], and countable products of cyclic groups with uniformly bounded orders [10].

In 1966, L. Carleson [3] established the a.e. convergence of the trigonometric Fourier series for $L^2(T)$ where T denotes the circle. This result was extended to $L^q(T)$, $q > 1$, by R. Hunt [6]. The L^2 result for the Walsh-Paley system was first established by P. Billard [1] and later improved by R. Hunt [7]. P. Sjölin [12] then proved the L^q result for the Walsh-Paley system. R. Hunt and M. Taibleson [8] established the result on local rings of integers for L^q, $q > 1$, and certain Orlicz spaces. Recently, R. Moore [10] established the result for $L^q(G)$, $q > 1$, where G is a countable product of discrete cyclic groups \mathbb{Z}/p_i which satisfies $\sup_i p_i < \infty$. All of these results are based on Carleson’s original proof [3] with various modifications and simplifications. A different unpublished proof was recently discovered by C. Fefferman.

The proof given here is also based on Carleson’s proof [3]. The simplifications used in the L^2 proof are closely related to those used in [7] while the L^q result is
based on the proof in [8]. In this proof great use is made of the subgroup structures of X and G.

This work has been divided into four main chapters. In Chapter I the essentials of Vilenkin systems are reviewed. In Chapter II preliminary results are collected. A new proof of Paley's theorem [11], [15] based on the Calderón-Zygmund decomposition [2] is given. In Chapter III the result is proved for $L^2(G)$. Finally, in Chapter IV the main result is extended to $L^q(G)$, $1 < q < 2$.

I. VILENKIN SYSTEMS

The groups G and X. Let G be a zero-dimensional, compact, abelian group which satisfies the second axiom of countability. The dual group of G, X, is a discrete, countable, abelian, torsion group [4, Theorems 24.15 and 24.26]. Vilenkin [14] proved the existence of a sequence of finite subgroups of X, $\{X_s\}_{s=0}^{\infty}$, which satisfy

1. $X_0 = \{\chi_0\}$, the identity character;
2. $X_s \subseteq X_{s+1}$;
3. $X = \bigcup_{s=0}^{\infty} X_s$;
4. X_s / X_{s+1} is of prime order p_s;
5. there exists a sequence $\{q_s\}_{s=0}^{\infty}$ in X such that $q_s \in X_{s+1} \setminus X_s$ and $q_s^{p_{s+1}} \in X_s$.

Such a pair of groups (G, X) as described above is called a Vilenkin system. A Vilenkin system is said to be bounded if $\sup_s p_s = p < \infty$. Throughout this work, we deal solely with a bounded Vilenkin system.

The subgroups G_s. Let G_s denote the annihilator of X_s. That is

$$G_s = \{x \in G : \chi(x) = 1 \text{ for all } \chi \in X_s\}.$$

Then each G_s is a compact, open subgroup of G. In addition, the sequence $\{G_s\}_{s=0}^{\infty}$ satisfies $G_0 = G$, $G_s \supset G_{s+1}$, and $\bigcap_{s=0}^{\infty} G_s = \{e\}$, the identity of G. Vilenkin [14] proved that for each s, there exists $x_s \in G_s \setminus G_{s+1}$ such that $q_s(x_s) = \exp\{2\pi i / p_{s+1}\}$. He also proved that each $x \in G$ has a unique representation of the form $x = \sum_{i=0}^{\infty} b_i x_i$ where $0 \leq b_i < p_{s+1}$. Consequently,

$$G_s = \left\{x \in G : x = \sum_{i=0}^{\infty} b_i x_i \text{ with } b_0 = b_1 = \cdots = b_{s-1} = 0\right\},$$

and each coset of G_s in G has a representation of the form $x + G_s$ with $x = \sum_{i=0}^{s-1} b_i x_i$, $0 \leq b_i < p_{s+1}$.

Each subgroup, G_s, is itself a zero-dimensional, compact, abelian group which satisfies the second axiom of countability. Its dual group can be identified with X/X_s [4, Theorem 24.5]. Thus if (G, X) is a bounded Vilenkin system with bound p, then so is $(G_s, X/X_s)$ for any $s \geq 0$.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
The orderings of X and X/X_s. As the choice of the sequence $(\varphi_j)_{j=0}^\infty$ is not unique, we assume a particular choice has been made. Having done so, the following ordering, introduced by Vilenkin [14], can be placed on X: Let $m_0 = 1$ and let $m_r = \prod_{j=0}^r p_j$ for $r \geq 1$. Then each natural number n can be uniquely expressed as $n = \sum_{r=0}^\infty \alpha_r m_r$ where $0 \leq \alpha_r < p_{r+1}$, and only finitely many of the α_r's are nonzero. Then we define X_n by the formula

$$X_n = \prod_{r=0}^\infty \varphi_r^{\alpha_r}.$$

With this ordering we have

1. $X_s = \{X_n : 0 \leq n < m_s\}, s = 0, 1, 2, \ldots$;
2. $X_s = \{X_n : n \text{ is of the form } \sum_{r=0}^\infty \alpha_r m_r\}$;
3. if $n = \alpha_r m_r + k, 0 \leq k < m_r$, then $X_n = (X_{m_r})^{\alpha_r} \cdot X_k$.

For the sake of brevity, we shall write the dual group of G_s simply as $\{X_n : n = \sum_{r=0}^\infty \alpha_r m_r\}$. The set $(X_{m_r} : n = \sum_{r=0}^\infty \alpha_r m_r)$ has an ordering induced by X. This ordering in turn induces an ordering on X/X_s, which is the one we use.

Notation. Throughout this work μ will denote the normalized Haar measure on G. By an interval ω, we shall mean any coset of G_s in G for some $s \geq 0$. If $\omega = \sum_{i=0}^{s-1} b_i x_i + G_s$, then $\mu(\omega) = \mu(G_s) = m_s^{-1}$. If $\omega \in G/G_1$, we define $\omega^* = G_s$. If $\omega = \sum_{i=0}^{s-1} b_i x_i + G_s, s > 1$, we define ω^* as

$$\omega^* = \sum_{i=0}^{s-1} b_i x_i + G_{s-1}.$$

Since there are p_{s-1} intervals ω with the same ω^*, we have

$$\mu(\omega^*) = p_{s-1} \mu(\omega) \leq p \mu(\omega).$$

Let $n = \sum_{r=0}^\infty \alpha_r m_r$ and let $\omega \in G/G_s$. Then we define $\mu(\omega)$ as the integer $\sum_{r=0}^\infty \alpha_r m_r$. Then if $x \in \omega \in G/G_s$ is of the form $x = \sum_{i=0}^{s-1} b_i x_i + g_s, g_s \in G_s$, we have

$$X_n(x) = \left\{ \prod_{r=0}^{s-1} \left(X_{m_r} \left(\sum_{i=0}^{r-1} b_i x_i \right) \right)^{\alpha_r} \right\} X_{m_s}(x).$$

Consequently, $X_n(x) = A(\omega)X_{m_s}(x)$ as x ranges over ω where $A(\omega)$ is a constant of modulus 1 depending only on ω. We also define

$$c_n(\omega) = c_n(\omega; f) = \mu(\omega)^{-1} \int_\omega f(t)X_{m_s}(t) \, d\mu(t),$$

and

$$C_n(\omega^*) = C_n(\omega^*; f) = \max_{\omega} |c_m(\omega)|,$$

where the maximum is taken over all ω' with $\omega'^* = \omega^*$. Throughout this work A will denote a constant, which may vary from line to line, depending only on the bound $p = \sup_s p_s$.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
Fourier series and Dirichlet kernels. The Fourier series of a function \(f \) in \(L^1(G) \) is the series \(\sum_{i=0}^{\infty} c_i \chi_i(x) \) where \(c_i = \int_G f(t) \chi_i(t) \, dp(t) \). For the \(n \)th partial sums, \(S_n f = \sum_{i=0}^{n-1} c_i \chi_i \), we have

\[
S_n f(x) = (f \ast D_n)(x) = \int_G f(t) D_n(x - t) \, dp(t),
\]

where \(D_n(x) = \sum_{i=0}^{n-1} \chi_i(x) \) is the Dirichlet kernel of order \(n \). Vilenkin [14] derived the following formulas:

\[
D_n(x) = m_n I_n(x),
\]

where \(I_n \) is the characteristic function of \(G_n \). Also if \(n = \sum_{s=0}^{\infty} \alpha_s m_s \),

\[
D_n(x) = \chi_n(x) \sum_{s=0}^{\infty} D_{m_s}(x) \Phi_{m_s}(x),
\]

with the appropriate interpretation if \(\alpha_s = 0 \) or 1. For convenience, we write

\[
D_n(x) = \chi_n(x) \sum_{s=0}^{\infty} D_{m_s}(x) \Phi_{m_s}(x).
\]

We define the modified \(n \)th partial sum, \(S_n^* f \), by the formula

\[
S_n^* f = \chi_n S_n(f \chi_n).
\]

It follows that \(S_n^* f = f \ast D_n^* \) where

\[
D_n^* = \sum_{s=0}^{\infty} D_{m_s} \Phi_{m_s}.
\]

II. PRELIMINARY RESULTS

The modified kernels \(D_n^* \). The modified kernels \(D_n^* \) satisfy the following two properties, which will be used in the proof of the main result. Let \(n = \sum_{s=0}^{\infty} \alpha_s m_s \). Then

\[
D_n^* = \sum_{s=0}^{\infty} \left(\sum_{k=m_{s+1} - \alpha m_s}^{m_s - 1} \chi_k \right),
\]

where the inner sum is 0 if \(\alpha_s = 0 \).

If \(\omega \in G/G_s \), \(s > 0 \), and \(x \notin \omega \),

\[
D_n^*(x - t) \text{ is constant as } t \text{ ranges over } \omega.
\]

To prove (12) it suffices to prove

\[
D_n \Phi_{m_s} = \sum_{k=m_{s+1} - \alpha m_s}^{m_s - 1} \chi_k
\]

since \(D_n^* = \sum_{s=0}^{\infty} D_{m_s} \Phi_{m_s} \). Using (1)(v), (7), and (4)(iii) we have
This completes the proof of (12).

To prove (13) we consider an interval \(\omega = \sum_{i=0}^{r-1} b_i x_i + G_r \). Each \(t \in \omega \) is of the form

\[
t = \sum_{i=0}^{r-1} b_i x_i + g_s(t)
\]

where \(g_s(t) \in G_s \). Let \(x \in \sum_{i=0}^{r-1} c_i x_i + G_r \). Then

\[
x = \sum_{i=0}^{r-1} c_i x_i + g_s(x)
\]

where \(g_s(x) \in G_s \). Since \(x \notin \omega \), it follows that \(b_i \neq c_i \) for some \(0 \leq i \leq s - 1 \).

Let \(\nu \) denote the smallest such \(i \). Then by (2) it follows that \(x - t \in G_{r+1} \setminus G_r \) for all \(t \in \omega \). By (7) and (8) we have,

\[
D^*_s(x - t) = \sum_{r=0}^{\infty} D^*_r(x - t) \Phi_{m_r}^*(x - t)
\]

(14)

\[
= \sum_{r=0}^{\nu-1} D^*_r(x - t) \Phi_{m_r}^*(x - t)
\]

\[
= \sum_{r=0}^{\nu-1} m_r (\chi_{m_r}(x - t))^\sim \left(\sum_{j=0}^{a_r-1} \chi_{m_r}(x - t) \right).
\]

For \(0 \leq r \leq \nu - 1 \), \(\chi_{m_r} \in X_{r+1} \subset X_r \subset X_s \). Recall that \(G_s \) is the annihilator of \(X_s \). Thus for any \(t \in \omega \) and \(0 \leq r \leq \nu - 1 \), we have

\[
\chi_{m_r}(x - t) = \chi_{m_r} \left(\sum_{i=0}^{r-1} (c_i - b_i) x_i \right) \chi_{m_r}(g_s(x)) \chi_{m_r}(g_s(t))
\]

Hence \(\chi_{m_r}(x - t) \) is constant as \(t \) ranges over \(\omega \) for \(0 \leq r \leq \nu - 1 \). By (14) it follows that \(D^*_s(x - t) \) is constant as \(t \) ranges over \(\omega \). This completes the proof of (13).
Plancherel's formula. In this section we deal with the completeness of the system X on G and X/X_s on G_s by using probabilistic methods. Let B denote the class of Borel sets, that is, the sigma-algebra generated by the compact sets in G. Let F_s denote the sigma-algebra generated by the cosets of G_s in G. If F denotes the sigma-algebra generated by $\bigcup_{i=0}^{\infty} F_i$, then $F = B$ [9, Lemma 3.2]. Let $x \in \omega = \sum_{i=0}^{\infty} b_i x_i + G$. Then

$$S_m f(x) = \int_G f(t) D_m(x - t) d\mu(t)$$

$$= m_s \int_{x+G_s} f(t) d\mu(t)$$

$$= \mu(\omega)^{-1} \int_{\omega} f(t) d\mu(t).$$

It follows that

$$S_m f = E(f \mid F_s)$$

where $E(f \mid K)$ denotes the conditional expectation of f with respect to the sigma-algebra K [13, p. 90]. Since $F = B$, the martingale convergence theorem [8, Theorem 3.1] implies $S_m f \to f$ a.e. as $s \to \infty$. The completeness of X on G now follows since any function, $f \in L^1(G)$, which has all vanishing coefficients, must satisfy $f(x) = 0$ a.e.

The completeness of X/X_s on G_s follows by an identical argument and normalization of the Haar measure on G_s. A simple translation argument shows that X/X_s is a complete orthonormal system on any coset of G_s in G with respect to the normalized measure $m_s \mu$.

We now have the following version of Plancherel's formula: Let $f \in L^2(G)$ and let ω be any interval. Then

$$\sum_{n(\omega)^{-1}}^{\infty} |c_{n(\omega)}(\omega)|^2 = \mu(\omega)^{-1} \int_{\omega} |f(t)|^2 d\mu(t).$$

The martingale maximal function. In place of the Hardy-Littlewood maximal function, we use a probabilistic analogue, the martingale maximal function. Let $f \in L^1(G)$ and define

$$E \ast f(x) = \sup_{r \geq 0} |E(f \mid F_r)(x)| = \sup_{r \geq 0} |S_m f(x)|.$$

Then the martingale maximal theorem states that if $1 < q \leq \infty$,

$$\|E \ast f\|_q \leq A_q \|f\|_q,$$

where A_q depends only on q [11, Theorem 6, p. 91]. Furthermore, we have $A_q = O(q/(q-1)) = O(1)$ as $q \to \infty$ [11, Lemma 2, p. 93].
Paley's theorem. The result proved in this section, Paley's theorem, states that the \(n \)th partial sum operators are bounded, uniformly in \(n \), from \(L^q(G) \) into itself for \(1 < q < \infty \). That is, there exists a constant \(A_q \) depending only on \(q \) such that for \(n \geq 1 \) and \(f \in L^q(G) \), \(1 < q < \infty \),

\[
\|S_n f\|_q \leq A_q \|f\|_q.
\]

We begin the proof by making several reductions. By considering \(f^+ \) and \(f^- \) separately, we may assume \(f \) is nonnegative. Since \(S_n f = \chi_n S_n^* (f \chi_n) \), it suffices to prove the result for \(S_n^* \). Since \(S_n^* = \chi_n S_n (f \chi_n) \), we have

\[
\|S_n^*\|_2 \leq \|f\|_2.
\]

To obtain the result for \(1 < q < 2 \), it suffices, by the Marcinkiewicz interpolation theorem [16, p. 112, vol. 2], to prove \(S_n^* \) has weak type \((1, 1)\) independent of \(n \). That is, for any \(\lambda > 0 \),

\[
\mu\{x \in G : |S_n^* f(x)| > \lambda\} \leq A \lambda^{-1} \|f\|_1.
\]

A standard duality argument, which we delay until the end of this section, then yields the result for \(q > 2 \).

To prove (20), we use a Calderón-Zygmund decomposition [2]. Let \(\lambda > 0 \) be fixed. We may assume \(\|f\|_1 < \lambda \). Let

\[
\Omega_1 = \left\{ \omega : \omega = b_0 x_0 + G_1, \mu(\omega)^{-1} \int_\omega f(t) d\mu(t) > \lambda \right\},
\]

\[
\Omega_2 = \left\{ \omega : \omega = b_1 x_1 + G_2, \omega \subset \Omega_1, \mu(\omega)^{-1} \int_\omega f(t) d\mu(t) > \lambda \right\}.
\]

In general, let

\[
\Omega_j = \left\{ \omega : \omega = \sum_{i=0}^{j-1} b_i x_i + G_j, \omega \subset \bigcup_{i=1}^{j-1} \Omega_i, \mu(\omega)^{-1} \int_\omega f(t) d\mu(t) > \lambda \right\}.
\]

We obtain a sequence \(\{\Omega_j\}_{j=1}^\infty \) and set \(\Omega = \bigcup_{j=1}^\infty \Omega_j \). Define

\[
g(x) = \mu(\omega)^{-1} \int_\omega f(t) d\mu(t) \quad \text{if } x \in \omega, \omega \in \Omega,
\]

\[
g(x) = f(x) \quad \text{if } x \notin \omega, \omega \in \Omega,
\]

and let \(b = f - g \). Then

\[
\mu\{x \in G : |S^* f(x)| > \lambda\} \leq \mu\{x \in G : |S^* g(x)| > \lambda/2\}
\]

\[+ \mu\{x \in G : |S^* b(x)| > \lambda/2\}.
\]

We show that each of these expressions is dominated by \(A \lambda^{-1} \|f\|_1 \). We begin with the estimate for \(g \) which readily follows from the inequality \(\|g\|_2^2 \leq A \lambda \|f\|_1 \). We
note that this estimate relies heavily on the bound of the p_j's. It follows from the martingale convergence theorem that $g(t) \leq \lambda$ for almost all t outside Ω. We have

$$
\int_G (g(t))^2 \, d\mu(t) = \sum_{\omega \in \Omega} \int_\omega (g(t))^2 \, d\mu(t) + \sum_{\omega \in \Omega} \int_\omega (g(t))^2 \, d\mu(t) \\
\leq \sum_{\omega \in \Omega} \lambda \int_\omega f(t) \, d\mu(t) + \sum_{\omega \in \Omega} \int_\omega (g(t))^2 \, d\mu(t).
$$

Using (6), we obtain

$$
\sum_{\omega \in \Omega} \int_\omega (g(t))^2 \, d\mu(t) = \sum_{\omega \in \Omega} \int_\omega g(t) (\mu(\omega)^{-1} \int_\omega f(s) \, d\mu(s)) \, d\mu(t) \\
\leq \sum_{\omega \in \Omega} \int_\omega g(t) \left(\frac{\mu(\omega^*)}{\mu(\omega)} \right) \left(\mu(\omega^*)^{-1} \int_\omega f(s) \, d\mu(s) \right) \, d\mu(t) \\
\leq p\lambda \sum_{\omega \in \Omega} \int_\omega g(t) \, d\mu(t) \\
= p\lambda \sum_{\omega \in \Omega} \int_\omega f(t) \, d\mu(t).
$$

Hence

$$
\int_G (g(t))^2 \, d\mu(t) \leq \lambda \sum_{\omega \in \Omega} \int_\omega f(t) \, d\mu(t) + p\lambda \sum_{\omega \in \Omega} \int_\omega f(t) \, d\mu(t) \\
\leq p\lambda \int_G f(t) \, d\mu(t).
$$

The estimate for g now follows:

$$
\mu\{x \in G: |S^*_n g(x)| > \lambda/2\} \leq 4\lambda^{-2} \|g\|_2^2 \leq (4\lambda^{-2})(p\lambda \|f\|_1) = 4p\lambda^{-1} \|f\|_1.
$$

To prove $\mu\{x \in G: |S^*_n b(x)| > \lambda/2\} \leq A\lambda^{-1} \|f\|_1$, we write

$$
\mu\{x \in G: |S^*_n b(x)| > \lambda/2\} \\
\leq \mu\{x \in G: |S^*_n b(x)| > \lambda/2, x \not\in \omega \in \Omega\} \\
+ \mu\{x \in G: |S^*_n b(x)| > \lambda/2, x \in \omega \in \Omega\} \\
\leq \mu\{x \in G: |S^*_n b(x)| > \lambda/2, x \not\in \omega \in \Omega\} + \sum_{\omega \in \Omega} \mu(\omega).
$$

It suffices to prove

(21) \quad $x \not\in \omega \in \Omega$ implies $S^*_n b(x) = 0$

and

(22) \quad $\sum_{\omega \in \Omega} \mu(\omega) \leq A\lambda^{-1} \|f\|_1$.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
To prove (21), we note that \(\int b(t) \, dp(t) = 0 \) for each \(\omega \in \Omega \). We write

\[
S^*_n b(x) = \sum_{\omega \in \Omega} b(t) D^*_n(x - t) \, dp(t).
\]

For \(x \in \omega \), (13) implies \(D^*_n(x - t) \) is constant as \(t \) ranges over \(\omega \). Since \(b \) has a vanishing integral on each \(\omega \), it follows that \(S^*_n b(x) = 0 \) for \(x \in \omega \in \Omega \), and (21) is proved. To prove (22), recall that each \(\omega \in \Omega \) satisfies \(\mu(\omega)^{-1} \int f(t) \, dp(t) > \lambda \). Thus

\[
\sum_{\omega \in \Omega} \mu(\omega) < \lambda^{-1} \sum_{\omega \in \Omega} \int f(t) \, dp(t) \leq \lambda^{-1} \|f\|_1,
\]

and (22) is proved.

We finally extend the result for \(q > 2 \) by a duality argument. At the same time, we shall obtain an estimate of the operator norm, \(\|S^*_n\|_q \), from \(L^q \) into itself, as \(q \) tends to infinity. By the Marcinkiewicz interpolation theorem [16, p. 112, vol. 2] there exists a constant \(A \) independent of \(n \) such that, for \(1 < q < 2 \), \(\|S^*_n\|_q \leq A(q/(q - 1)) \). Let \(q' > 2 \) satisfy \(q^{-1} + q'^{-1} = 1 \). Then

\[
\|S^*_n f\|_{q'} = \sup_{h \in L^q(G); \|h\|_q \leq 1} \left\| \int_G S^*_n f(x) h(x) \, dp(x) \right\|
\leq \sup_{h \in L^q(G); \|h\|_q \leq A(q/(q - 1))} \left\| \int_G f(x) h(x) \, dp(x) \right\|
\leq A(q/(q - 1)) \|f\|_{q'}
\leq Aq' \|f\|_{q'}.
\]

Hence \(\|S^*_n\|_q \leq Aq' \). That is

\[
(23) \quad \|S^*_n\|_q = O(q') \quad \text{as } q' \to \infty
\]

with bound independent of \(n \). This completes the proof of Paley's theorem.

III. THE \(L^2 \) RESULT

Introduction and basic results. The main result of this work is the following

Theorem. Let \(f \in L^2(G) \). Then \(S_nf \) converges to \(f \) almost everywhere as \(n \) tends to infinity.

As in the case of Paley's theorem, we make several reductions of the proof. Let \(Mf \) be defined by \(Mf(x) = \sup_{n \geq 0} |S_nf(x)| \) for \(x \in G \). Then it suffices to prove that, for every \(\lambda > 0 \),

\[
(24) \quad \mu(x \in G : Mf(x) > \lambda) \leq A \lambda^{-2/2},
\]
where \(\mathcal{A} \) is independent of \(f \) and \(\lambda \). To see this, let \(\{\varepsilon_k\}_{k=1}^{\infty} \) be a positive sequence decreasing to zero, and let \(\{R_k\}_{k=1}^{\infty} \) be a sequence of finite linear combinations of characters such that \(\|f - R_k\|_2^2 \leq \varepsilon_k^2 \). Then assuming (24), we have

\[
\begin{align*}
\mu\left\{ x \in G : \limsup_{n \to \infty} |S_n f(x) - f(x)| > \varepsilon_k \right\} \\
\leq \mu\left\{ x \in G : \limsup_{n \to \infty} |S_n (f - R_k)(x)| > \varepsilon_k/3 \right\} \\
+ \mu\left\{ x \in G : \limsup_{n \to \infty} |S_n R_k(x) - R_k(x)| > \varepsilon_k/3 \right\} \\
+ \mu\{ x \in G : |R_k(x) - f(x)| > \varepsilon_k/3 \} \\
\leq \mu\{ x \in G : M(f - R_k)(x) > \varepsilon_k/3 \} \\
+ \mu\{ x \in G : |R_k(x) - f(x)| > \varepsilon_k/3 \} \\
\leq 3A\varepsilon_k^2 \|f - R_k\|_2^2 + 3\varepsilon_k^2 \|f - R_k\|_2^2 \\
\leq A\varepsilon_k.
\end{align*}
\]

For each positive integer \(N \) let \(M_N f(x) = \max_{1 \leq n \leq m_N} |S_n f(x)| \). For each \(\lambda > 0 \), we define an exceptional set \(E(\lambda, N, f) \) such that

\[
(25) \quad \mu(E(\lambda, N, f)) \leq A_1 \lambda^{-2} \|f\|_2^2,
\]

and

\[
(26) \quad x \notin E(\lambda, N, f) \implies M_N f(x) \leq A_2 \lambda,
\]

where \(A_1 \) and \(A_2 \) are two positive constants which do not depend on \(N, \lambda, \) or \(f \). Since

\[
\{ x \in G : Mf(x) > \lambda \} = \{ x \in G : M(A_2 f) > A_2 \lambda \} \\
\subseteq \bigcup_{N=1}^{\infty} E(\lambda, N, A_2 f),
\]

(25) and (26) imply

\[
\begin{align*}
\mu\{ x \in G : Mf(x) > \lambda \} &\leq \mu\left\{ \bigcup_{N=1}^{\infty} E(\lambda, N, A_2 f) \right\} \\
&= \lim_{N \to \infty} \mu\{ E(\lambda, N, A_2 f) \} \\
&\leq A_1 \lambda^{-2} \|A_2 f\|_2^2 \\
&= A_1 A_2^2 \lambda^{-2} \|f\|_2^2.
\end{align*}
\]

Thus it suffices to prove (25) and (26) for \(\lambda, N, \) and \(f \) fixed. From this point on we shall write \(E(\lambda, N, f) \) simply as \(E \). We may also assume \(\|f\|_2 < \lambda \).
The exceptional set E will consist of two basic parts, E_1 and E_2. E_1 will be made up of certain intervals ω, and it will be easy to show

$$\mu(E_1) \leq A \lambda^2 \|f\|_2^2. \quad (27)$$

E_2 will be more complicated. We shall define a sequence, $\{A_j^\ast\}_{j=1}^\infty$, of collections of pairs $(n(\omega^\ast), \omega^\ast)$, where n is a positive integer. For each pair $(n(\omega^\ast), \omega^\ast) \in A_j^\ast$, we define an exceptional subset $V(n(\omega^\ast), \omega^\ast, j)$ such that

$$\mu(V(n(\omega^\ast), \omega^\ast, j)) \leq p^{-3/2} \mu(\omega^\ast). \quad (28)$$

By using Plancherel's formula (16), we shall prove that

$$\sum_{\lambda_j^o} \mu(\omega^\ast) \leq A p^{3/2} \lambda^2 \|f\|_2^2, \quad (29)$$

where the sum is taken over all pairs $(n(\omega^\ast), \omega^\ast) \in A_j^\ast$. Setting

$$E_2 = \bigcup_{j=1}^\infty \bigcup_{\lambda_j^o} V(n(\omega^\ast), \omega^\ast, j),$$

(28) and (29) imply

$$\mu(E_2) \leq A \left(\sum_{j=1}^\infty p^{-j} \right) \lambda^2 \|f\|_2^2. \quad (30)$$

Combining (27) and (30), we have

$$\mu(E) \leq A \lambda^2 \|f\|_2^2. \quad (31)$$

For certain pairs $(n(\omega^\ast), \omega^\ast) \in A_j^\ast$, we define a partition of ω^\ast, $\Pi(n(\omega^\ast), \omega^\ast, j)$, where the elements of the partition are intervals. If $x \notin E$ and $\bar{\omega}^\ast$ denotes the partition element which contains x, we obtain the estimate

$$|S_{n(\omega^\ast)}f(x) - S_{\bar{\omega}^\ast}f(x)| \leq p^{-j/2} \lambda. \quad (32)$$

If the partition $\Pi(n(\bar{\omega}^\ast), \bar{\omega}^\ast, j')$ were defined for some $j' < j$, we could repeat the above argument and find $\bar{\omega}^\ast$ such that $x \in \bar{\omega}^\ast$ and

$$|S_{n(\bar{\omega}^\ast)}f(x) - S_{\bar{\omega}^\ast}f(x)| \leq p^{-j'/2} \lambda.$$

Summing over all such estimates would show that for $x \notin E$, $|S_n f(x)| \leq (\sum_{j=1}^\infty p^{-j/2}) \lambda$, and we would be done. However, since $\Pi(n(\bar{\omega}^\ast), \bar{\omega}^\ast, j')$ may not be defined, we must change from $(n(\bar{\omega}^\ast), \omega^\ast)$ to a new pair $(\bar{n}(\bar{\omega}^\ast), \bar{\omega}^\ast)$ and make the appropriate estimates. After this modification, we shall be able to prove that if $x \notin E$, $|S_n f(x)| \leq A \lambda$ where A is a constant which depends only on p.

Selected pairs A_j and A_j^\ast. Let $\omega \in G/G_s$, $1 \leq s \leq N$, and consider the collection of pairs $\{(n(\omega), \omega) : 1 \leq n \leq m_N\}$. For each pair set

$$\Delta(n(\omega), \omega) = \max\{|c_{n(\omega)}(\bar{\omega})| : \bar{\omega} \supseteq \omega^\ast, \bar{n}(\omega) = n(\omega)\}. \quad (33)$$
Let Λ_j denote the collection of pairs $(n(\omega), \omega)$ which satisfy

\[|c_{n(\omega)}(\omega)| \geq p^{-j}\lambda, \]

and for which one of the following conditions holds:

\[\omega^* = G \quad \text{and} \quad |c_{n(\omega)}(\omega)| < p^{-j+1}\lambda, \]

\[\omega^* \neq G \quad \text{and} \quad \Delta(n(\omega), \omega) < p^{-j}\lambda. \]

To estimate $\sum \mu(\omega)$, where the sum is taken over all pairs $(n(\omega), \omega) \in \Lambda_j$, we use a collection of "polynomials", $P_j(x; \omega)$. Let

\[P_j(x; \omega) = \sum_{(n(\omega), \omega) \in \Lambda_j} c_{n(\omega)}(\omega)X_{n(\omega)}(x). \]

Suppose $\omega \in G/G_s$, $s > 1$. Then

\[\int f(t) \, d\mu(t) - \sum_{(n(\omega), \omega) \in \Lambda_j} c_{n(\omega)}(\omega)X_{n(\omega)}(t) \int d\mu(t) \]

\[= \int f(t) \, d\mu(t) - \sum_{(n(\omega), \omega) \in \Lambda_j} c_{n(\omega)}(\omega)X_{n(\omega)}(t) \int d\mu(t) \]

\[- 2 \text{Re} \left(\int f(t) \sum_{(n(\omega), \omega) \in \Lambda_j} c_{n(\omega)}(\omega)X_{n(\omega)}(t) \, d\mu(t) \right) \]

\[+ 2 \text{Re} \left(\int P_j(t; \omega^*) \sum_{(n(\omega), \omega) \in \Lambda_j} c_{n(\omega)}(\omega)X_{n(\omega)}(t) \, d\mu(t) \right) \]

\[+ \int \sum_{(n(\omega), \omega) \in \Lambda_j} c_{n(\omega)}(\omega)X_{n(\omega)}(t) \, d\mu(t). \]

To see that the third integral in (38) is zero, consider a single term of the product, $c_{n(\omega)}(\omega)c_{n(\omega)}(\omega)X_{n(\omega)}(t)X_{n(\omega)}(t)$. By (37) we have $\omega^* \supset \omega^* \text{ and } (n(\omega), \omega) \in \Lambda_j$. Hence, (34) implies

\[|c_{n(\omega)}(\omega)| \geq p^{-j}\lambda. \]

By the ordering on X/X_s, $X_{n(\omega)}$ and $X_{n(\omega)}$ are orthogonal on ω unless

\[\overline{n}(\omega) = n(\omega). \]

Consequently, (33), (39), and (40) imply

\[\Delta(n(\omega), \omega) \geq p^{-j}\lambda. \]

But $(n(\omega), \omega) \in \Lambda_j$, and $\omega^* \neq G$ since $\omega \in G/G_s$, $s > 1$, By (36),

\[\Delta(n(\omega), \omega) < p^{-j}\lambda. \]
(41) and (42) are a contradiction, and so the third integral of (38) vanishes. Applying Plancherel’s formula (16) to the last integral of (38), we have

\[
\int_\omega \left| \sum_{(n(\omega),u) \in \Lambda_j} c_{n(\omega)}(\omega) \chi_{n(\omega)}(t) \right|^2 d\mu(t) = \mu(\omega) \sum_{(n(\omega),u) \in \Lambda_j} |c_{n(\omega)}(\omega)|^2.
\]

Dropping the third integral in (38) and using (43) we obtain

\[
\int_\omega |f(t) - P_j(t; \omega)|^2 d\mu(t)
\]

\[
= \int_\omega |f(t) - P_j(t; \omega^*)|^2 d\mu(t)
\]

\[
- 2 \text{ Re} \left\{ \sum_{(n(\omega),u) \in \Lambda_j} \overline{c_{n(\omega)}(\omega)} \int_\omega f(t) \chi_{n(\omega)}(t) d\mu(t) \right\}
\]

\[
+ \mu(\omega) \sum_{(n(\omega),u) \in \Lambda_j} |c_{n(\omega)}(\omega)|^2
\]

\[
= \int_\omega |f(t) - P_j(t; \omega^*)|^2 d\mu(t) - 2 \mu(\omega) \sum_{(n(\omega),u) \in \Lambda_j} |c_{n(\omega)}(\omega)|^2
\]

\[
= \int_\omega |f(t) - P_j(t; \omega^*)|^2 d\mu(t) - \mu(\omega) \sum_{(n(\omega),u) \in \Lambda_j} |c_{n(\omega)}(\omega)|^2.
\]

Summing (44) over all $\omega \in G/G_1$, we obtain

\[
\sum_{\omega \in G/G_1} \int_\omega |f(t) - P_j(t; \omega)|^2 d\mu(t)
\]

\[
= \sum_{\omega \in G/G_1} \int_\omega |f(t) - P_j(t; \omega^*)|^2 d\mu(t)
\]

\[
- \sum_{\omega \in G/G_1} \sum_{(n(\omega),u) \in \Lambda_j} \mu(\omega) |c_{n(\omega)}(\omega)|^2
\]

\[
= \sum_{\omega \in G/G_{r+1}} \int_\omega |f(t) - P_j(t; \omega)|^2 d\mu(t)
\]

\[
- \sum_{\omega \in G/G_r} \sum_{(n(\omega),u) \in \Lambda_j} \mu(\omega) |c_{n(\omega)}(\omega)|^2.
\]

We repeat the above argument, beginning with (38), to the first term on the right-hand side of (45). We continue this procedure until we obtain after a finite number of steps

\[
\sum_{\omega \in G/G_r} \int_\omega |f(t) - P_j(t; \omega)|^2 d\mu(t)
\]

\[
= \sum_{\omega \in G/G_1} \int_\omega |f(t) - P_j(t; \omega^*)|^2 d\mu(t)
\]

\[
- \sum_{r=1} \sum_{\omega \in G/G_r} \sum_{(n(\omega),u) \in \Lambda_j} \mu(\omega) |c_{n(\omega)}(\omega)|^2.
\]

If $\omega \in G/G_1$, $P_j(t; \omega^*) = 0$ for all t. Setting $s = N$ in (46), we obtain
$$0 \leq \sum_{\omega \in \mathcal{G}} \int_\omega |f(t) - P(t; \omega)|^2 d\mu(t)$$

$$= \|f\|_2^2 - \sum_{(n(\omega), \omega) \in \Lambda} \mu(\omega)|c_{n(\omega)}(\omega)|^2.$$ Consequently

$$(47) \quad \sum_{(n(\omega), \omega) \in \Lambda} \mu(\omega)|c_{n(\omega)}(\omega)|^2 \leq \|f\|_2^2.$$ If \((n(\omega), \omega) \in \Lambda\), we have, by (34), \(|c_{n(\omega)}(\omega)| \geq p^{-1} \lambda\). Therefore (47) implies

$$(48) \quad \sum_{(n(\omega), \omega) \in \Lambda} \mu(\omega) \leq p^2 \lambda^{-2} \|f\|_2^2.$$ We now define \(\Lambda'_*\) as the collection of pairs \(\{(n(\omega^*), \omega^*): (n(\omega), \omega) \in \Lambda\}\). Note that for each pair in \(\Lambda\), there are at most \(p\) pairs in \(\Lambda'_*\). This fact, (6) and (48) imply

$$(49) \quad \sum_{\Lambda'_*} \mu(\omega^*) \leq p^2 \sum_{\Lambda_j} \mu(\omega) \leq p^{2+\gamma} \lambda^{-2} \|f\|_2^2,$$ where the sums in (49) are taken over all pairs in \(\Lambda'_*\) and \(\Lambda_j\) respectively. Estimate (49) will be used later to estimate \(\mu(E_2)\).

The set \(E_1\). At this point we must define \(E_1\), the first part of the exceptional set \(E\). Let

$$\mathcal{E}_1 = \left\{ \omega: \mu(\omega)^{-1} \int_\omega |f(t)|^2 d\mu(t) > \lambda^2 \right\} \quad \text{and}$$

$$(50) \quad E_1 = \bigcup_{\omega \in \mathcal{E}_1} \{x \in G: x \in \omega^*\}.$$ Using (6) and (50) we obtain

$$(51) \quad \mu(E_1) \leq p \sum_{\omega \in \mathcal{E}_1} \mu(\omega) \leq p \lambda^{-2} \sum_{\omega \in \mathcal{E}_1} \int_\omega |f(t)|^2 d\mu(t)$$

$$\leq A \lambda^{-2} \|f\|_2^2.$$ Now suppose \(\omega^* \subset E_1\). Then if \(\overline{\omega}\) is such that \(\overline{\omega} = \omega^*\), we have \(\overline{\omega} \subset \overline{E_1}\). Consequently, for any \(n\), we have

$$(52) \quad |c_{n(\overline{\omega})}(\overline{\omega})| = \mu(\overline{\omega})^{-1} \left| \int_\omega f(t) \overline{c_{n(\overline{\omega})}(t)} d\mu(t) \right|$$

$$\leq \mu(\overline{\omega})^{-1} \int_\omega |f(t)| d\mu(t)$$

$$\leq \mu(\overline{\omega})^{-1} \left(\int_\omega |f(t)|^2 d\mu(t) \right)^{1/2} (\mu(\overline{\omega}))^{1/2}$$

$$\leq \mu(\overline{\omega})^{-1/2} (\lambda^2 \mu(\overline{\omega}))^{1/2} = \lambda.$$ It follows that if \(\omega^* \subset E_1\),
The partitions $\Pi(n(\omega^*), \omega^*, j)$. In this section we define a partition $\Pi(n(\omega^*), \omega^*, j)$ for each pair $(n(\omega^*), \omega^*) \in \Lambda^*$ such that $\omega^* \subset E_i$. If $\omega^* \in G/G_s, 0 \leq s < N$, the elements of the partition $\Pi(n(\omega^*), \omega^*, j)$ will be cosets in G/G_s where $s < r \leq N$.

At this point we must make a small technical adjustment. If $\omega^* = G$, by (35) a pair $(n(\omega^*), \omega^*) = (n, \omega^*)$ may belong to more than one Λ^*_j. If this is so, we delete (n, ω^*) from all Λ^*_j except the one with minimal j.

Suppose $\omega^* \subset E_i$ and $(n(\omega^*), \omega^*) \in \Lambda^*_j$. Then we show

$$C_{n(\omega^*)}(\omega^*) < p^{-j+1} \lambda.$$

Consider ω such that $\omega^* = \omega^*$ and $|c_{n(\omega)}(\omega)| > 0$. Since $\omega^* \subset E_i$, we have $|c_{n(\omega)}(\omega)| < \lambda$ so there exists $j > 1$ such that $p^{-j} \lambda < |c_{n(\omega)}(\omega)| < p^{-j+1} \lambda$. If $\omega^* = G$, (34) and (35) imply $(n(\omega^*), \omega^*) \in \Lambda_j$. By the above deletion it follows that $j > j$. Therefore

$$C_{n(\omega^*)}(\omega^*) = \max_{\omega^* \in \omega^*} |c_{n(\omega)}(\omega)| < p^{-j+1} \lambda \leq p^{-j+1} \lambda$$

and (54) is true. If $\omega^* \neq G$ and $\omega = \sum_{i=0}^{s-1} b_i x_i + G_s, s > 1$, we have by (4)(iii) and (7) applied to $(X/G_{s-1}, G_{s-1})$,

$$|c_{n(\omega)}(\omega)| = \mu(\omega)^{-1} \left| \int_{\omega} f(t) \chi_{n(\omega)}(t) \, d\mu(t) \right|$$

$$= \mu(\omega^*)^{-1} p_s^{-1} \left| \int_{\omega^*} f(t) \chi_{n(\omega)}(t) \sum_{t=0}^{s-1} x_{n(t)} \left(\sum_{t=0}^{s-1} b_i x_i - \tau \right) \, d\mu(t) \right|$$

$$= \mu(\omega^*)^{-1} \sum_{\substack{r=0 \ldots s-1 \vdots 1}} \left| \int_{\omega^*} f(t) \chi_{n(t)}(t) \chi_{n(t)}(t) \, d\mu(t) \right|$$

$$\leq \mu(\omega^*)^{-1} \left| \sum_{t=0}^{s-1} \mu(\omega^*)^{-1} \int_{\omega^*} f(t) \chi_{n(t)}(t) \chi_{n(t)}(t) \, d\mu(t) \right|.$$

Since $(n(\omega^*), \omega^*) \in \Lambda^*_j$, there exists ω with $\omega^* = \omega^*$ and $(n(\omega), \omega) \in \Lambda_j$. If $n(\omega^*) = p_{s-1} + n(\omega)$, $n(\omega) = n(\omega)$, we have $n(\omega) = n(\omega) = n(\omega)$. Since $\omega^* \neq G$, (36) implies

$$\mu(\omega^*)^{-1} \left| \int_{\omega^*} f(t) \chi_{n(\omega)}(t) \, d\mu(t) \right| \leq \Delta(n(\omega), \omega) < p^{-j} \lambda.$$

Combining (55) and (56), we obtain
\[|c_m(\tilde{\omega})| < \sum_{j=0}^{p-1} p^{-j} \lambda \leq p^{-j+1} \lambda. \]

Since \(\tilde{\omega} \) was any interval with \(\omega^* = \omega^* \), (57) implies
\[c_{n(\omega^*)}(\omega^*) = \max_{\tilde{\omega} \subseteq \omega^*} |c_m(\tilde{\omega})| < p^{-j+1} \lambda \]
and (54) is true if \(\omega^* \neq G \). This establishes (54).

Let \((n(\omega^*), \omega^*) \in \Lambda^*, \omega^* \subseteq E_1 \), and \(\omega^* \subseteq G/G_t \). We define the partition \(\Pi(n(\omega^*), \omega^*, j) \) as follows: Let

\[\Omega_1(n(\omega^*), \omega^*, j) = \{ \omega \in G/G_{j+1} : \omega \subseteq \omega^*, c_{n(\omega^*)}(\omega) \geq p^{-j+1} \lambda \}, \]
\[\Omega_2(n(\omega^*), \omega^*, j) = \{ \omega \in G/G_{j+2} : \omega \subseteq \omega^* \setminus \Omega_1(n(\omega^*), \omega^*, j), c_{n(\omega^*)}(\omega) \geq p^{-j+1} \lambda \}. \]

In general, if \(1 \leq i < N-s \), let
\[\Omega_i(n(\omega^*), \omega^*, j) = \{ \omega \in G/G_{i+1} : \omega \subseteq \omega^* \setminus \bigcup_{r=1}^{i-1} \Omega_r(n(\omega^*), \omega^*, j), c_{n(\omega^*)}(\omega) \geq p^{-j+1} \lambda \}. \]

Finally, let
\[\Omega_{N-s}(n(\omega^*), \omega^*, j) = \{ \omega \in G/G_N : \omega \subseteq \omega^* \setminus \bigcup_{r=1}^{N-s-1} \Omega_r(n(\omega^*), \omega^*, j) \}. \]

Then \(\bigcup_{r=1}^{N-s} \Omega_r(n(\omega^*), \omega^*, j) \) forms a partition of \(\omega^* \), \(\Pi(n(\omega^*), \omega^*, j) \) with the following properties:

(i) \(\tilde{\omega} \subseteq \omega^* \) for each \(\tilde{\omega} \in \Pi(n(\omega^*), \omega^*, j) \);

(ii) if \(\tilde{\omega} \subseteq \omega \subseteq \omega^* \) and \(\tilde{\omega} \in \Pi(n(\omega^*), \omega^*, j) \), \(|c_{n(\omega^*)}(\tilde{\omega})| < p^{-j+1} \lambda \):

(iii) if \(\tilde{\omega} \in \Pi(n(\omega^*), \omega^*, j) \) and \(\tilde{\omega} \in G/G_N \), \(s < N \), then \(|c_{n(\omega^*)}(\tilde{\omega})| \geq p^{-j+1} \lambda \) for at least one \(\tilde{\omega} \) such that \(\omega^* = \tilde{\omega} \).

To see (58)(i) note that each \(\tilde{\omega} \in \Pi(n(\omega^*), \omega^*, j) \) must satisfy \(c_{n(\omega^*)}(\tilde{\omega}) \geq p^{-j+1} \lambda \), and by (54) this cannot be satisfied if \(\tilde{\omega} = \omega^* \). To see (58)(ii) we note that if \(|c_{n(\omega^*)}(\tilde{\omega})| \geq p^{-j+1} \lambda \), \(c_{n(\omega^*)}(\omega^*) \geq p^{-j+1} \lambda \) and so there exists a largest interval \(\hat{\omega}^* \) such that \(c_{n(\omega^*)}(\hat{\omega}^*) \geq p^{-j+1} \lambda \), \(\hat{\omega}^* \subseteq \omega^* \subseteq \omega^* \). Then \(\hat{\omega}^* \in \Pi(n(\omega^*), \omega^*, j) \). But then \(\tilde{\omega} \subseteq \hat{\omega} \) which is impossible since \(\tilde{\omega} \in \Pi(n(\omega^*), \omega^*, j) \). Thus (58)(iii) holds. (58)(iii) is clear from the construction of \(\Pi(n(\omega^*), \omega^*, j) \).

The basic estimate. Let \((n(\omega^*), \omega^*) \in \Lambda^*, \omega^* \subseteq G/G_t \), and \(\omega^* \subseteq E_1 \). Then the partition \(\Pi(n(\omega^*), \omega^*, j) \) is defined. Let \(\tilde{\omega} \) satisfy \(\tilde{\omega} \subseteq \omega \subseteq \omega^* \) where \(\omega \) is any element of \(\Pi(n(\omega^*), \omega^*, j) \). Then \(\tilde{\omega} \) is a union of elements \(\omega' \in \Pi(n(\omega^*), \omega^*, j) \).

This follows from the fact that given any two cosets, either they are disjoint or
one contains the other. Our aim is to estimate $S_{n(\omega^*),f}(x) - S_{n(\omega),f}(x)$ where $x \in \omega'$. We define

$$h(t) = 0 \quad \text{if } t \notin \omega^*, \quad (59)$$

$$= \mu(\omega)^{-1} \int_{\omega} f(t)\chi_{m(\omega)}(t) \, dp(t) \quad \text{if } t \in \omega \in \Pi(n(\omega^*), \omega^*, j).$$

Note that if $t \in \omega \in \Pi(n(\omega^*), \omega^*, j)$, $h(t) = c_{m(\omega)}(\omega)$. Consequently, by (58)(ii), we have

$$||h||_\infty \leq p^{-j+1}\lambda. \quad (60)$$

If $\omega \in G/G_j$, $s' \geq s$, we have by (9)

$$S_{n(\omega^*),f}(x) - S_{n(\omega),f}(x) = \int_{\omega} f(t)\{D_{n(\omega^*)}(x-t) - D_{n(\omega)}(x-t)\} \, dp(t)$$

$$= \int_{\omega} f(t) \left\{ \chi_{n(\omega^*)}(x-t) \left(\sum_{r=2}^{s'} D_m(x-t) \Phi_{m_r} \right) - \chi_{n(\omega)}(x-t) \left(\sum_{r=2}^{s'} D_m(x-t) \Phi_{m_r} \right) \right\} \, dp(t). \quad (61)$$

By (7) both sums vanish if $x-t \notin G_j$ or equivalently if $t \notin \omega^*$. Now

$$\chi_{n(\omega^*)} = \left(\prod_{r=2}^{s'-1} \varphi_{m_r} \right) \chi_{n(\omega)}.$$

where by (1)(v), $\varphi_{m_r} \in X_r$ for $s \leq r \leq s' - 1$. By (7) the second sum vanishes unless $x-t \in G_j$. Consequently, $\chi_{n(\omega^*)}$ and $\chi_{n(\omega)}$ agree whenever the second sum does not vanish. Using the facts, we write (61) as

$$S_{n(\omega^*),f}(x) - S_{n(\omega),f}(x)$$

$$= \sum_{\omega' \in \Pi(n(\omega^*), \omega^*, j)} \int_{\omega} f(t)\chi_{n(\omega^*)}(t) \left(\sum_{r=2}^{s'-1} D_m(x-t) \Phi_{m_r} \right) \, dp(t) \quad (62)$$

where the sum is taken over all $\omega' \in \Pi(n(\omega^*), \omega^*, j)$. For each ω',

$$\sum_{r=2}^{s'-1} D_m(x-t) \Phi_{m_r}$$

is constant as t ranges over ω'. To see this, first consider the case $x \in \omega'$. The result follows by applying (13) with $n' = \sum_{r=2}^{s'-1} \alpha_r m_r$. In the case $x \in \omega'$, we have $x-t \in G_j$ as t ranges over ω'. With $n' = \sum_{r=2}^{s'-1} \alpha_r m_r$, we have by (12),
\[
\sum_{r=0}^{s-1} \Phi_m \Phi_m = \sum_{r=0}^{s-1} \sum_{k=m+1}^{r} \chi_k.
\]

In particular, \(\sum_{r=0}^{s-1} \Phi_m \Phi_m\) is a sum of characters \(\{\chi_k\}\) with \(k < m\). Hence by (4)(i) \(\sum_{r=0}^{s-1} \Phi_m \Phi_m\) is a sum of characters from \(X_r\). Since \(x - t \in G_r\) as \(t\) ranges over \(\omega\), the result holds. By (59) it follows that for each \(\omega' \in \Pi(n(\omega),\omega^*,j)\), we may replace \(f(t)\chi_{\omega^*}(t)\) by \(h(t)\) in (62). Using this fact, (12), and (59), we obtain

\[
S_{n(\omega)}f(x) = S_{n(\omega)}f(x) - S_{n(\omega)}f(x) = \sum_{x \in \omega^*} \int_{G} h(t) \left(\sum_{r=0}^{s-1} D_m(x - t) \Phi_m \Phi_m(x - t) \right) d\mu(t)
\]

(63)

The last equality follows from (12). It now follows from (15) that

\[
|S_{n(\omega)}f(x) - S_{n(\omega)}f(x)| \leq E^*(S^*_{n(\omega)}h)(x)
\]

where \(E^*\) denotes the martingale maximal function.

The set \(E_2\). We are now in position to define \(E_2\). For each pair \((n(\omega^*),\omega^*) \in \Lambda^*_\omega\) with \(\omega^* \subseteq E_1\), we define the subset

\[
V(n(\omega^*),\omega^*, j) = \{x \in \omega^* : E^*(S^*_{n(\omega)}h)(x) > p^{-j/2}\lambda\},
\]

where \(h\) is defined on \(\omega^*\) as in (59). Applying (17) and (18), each with \(q = 6\), and (60), we obtain

\[
\mu(V(n(\omega^*),\omega^*, j)) \leq (p^{-j/2}\lambda)^{-6} \|E^*(S^*_{n(\omega)}h)\|_{L^6}(p^{-j+1}\lambda)^{6} \mu(\omega^*)
\]

(66)

\[
\leq A_6(p^{-j/2}\lambda)^{-6} \mu(\omega^*)
\]

where \(\Lambda^*_\omega\) is the union of \(\Lambda_{j}^*\) for all \(j \geq 1\). Then set \(E_2 = \bigcup_{j=1}^{\infty} E_2^j\). Using (49) and (66) we obtain

\[
\leq A^j(p^{-j}\lambda)^{-6} \mu(\omega^*)
\]
We now set $E = E(\lambda, N, f) = E_1 \cup E_2$. Inequalities (51) and (67) imply

$$\mu(E) \leq A \lambda^{-2} ||f||^2.$$

Changing of pairs. Let $\omega^* \subseteq E$ satisfy $p^{-j} \lambda \leq C_{n(\omega^*)}(\omega^*)$. We show that there exist $\tilde{n}, \tilde{\omega}^*$ and \tilde{j} such that

(i) $\tilde{n}(\tilde{\omega}) = n(\omega)$ where $\tilde{\omega}^* = \omega^*$;

(ii) $\tilde{\omega}^* \supset \omega^*$;

(iii) $1 \leq \tilde{j} \leq j$;

(iv) $(\tilde{n}(\tilde{\omega}^*), \tilde{\omega}^*) \in \Lambda^*.$

If $(n(\omega^*), \omega^*) \in \Lambda^*$, the result is obvious by setting $\tilde{n} = n, \tilde{j} = j, \tilde{\omega}^* = \omega^*$. We may therefore assume $(n(\omega^*), \omega^*) \notin \Lambda^*$. We first consider the case when $\omega^* = G$. Since $\omega^* \subseteq E$, (53) implies $C_{n(\omega^*)}(\omega^*) < \lambda$. Hence there exists \tilde{j} with $1 \leq \tilde{j} \leq j$ such that

$$p^{-j} \lambda \leq C_{n(\omega^*)}(\omega^*) < p^{-j+1} \lambda.$$

Then there exists $\tilde{\omega}$ with $\tilde{\omega}^* = \omega^*$ such that

$$p^{-j} \lambda < |c_{n(\tilde{\omega})}(\tilde{\omega})| < p^{-j+1} \lambda.$$

By (35), $(n(\tilde{\omega}), \tilde{\omega}) \in \Lambda$. From (70) it follows that $\tilde{j} = \min\{j : (n(\tilde{\omega}), \tilde{\omega}) \in \Lambda, \tilde{\omega}^* = \omega^* \}$. Thus $(n(\omega^*), \omega^*) \notin \Lambda^*.$ (Recall the deletion.) We now consider the case when $\omega^* \neq G$. Since $p^{-j} \lambda \leq C_{n(\omega^*)}(\omega^*)$ and $(n(\omega^*), \omega^*) \notin \Lambda^*$, there must exist $\tilde{\omega}$ with $\tilde{\omega}^* = \omega^*$ and

$$\Delta(n(\tilde{\omega}), \tilde{\omega}) \geq p^{-j} \lambda.$$

(33) and (71) imply there exist ω' with $\omega' \supset \omega^*$ and n' with $n'(\tilde{\omega}) = n(\tilde{\omega})$ such that

$$|c_{n'(\omega')}(\omega')| \geq p^{-j} \lambda.$$

Consequently,

$$C_{n'(\omega')}(\omega') \geq p^{-j} \lambda.$$
If \((n'(\omega^*), \omega^*) \in \Lambda^*_j\), we stop and set \(j = j\), \(\omega^* = \omega^*\), and \(\bar{n} = n'\). If \((n'(\omega^*), \omega^*) \not\in \Lambda^*_j\), we repeat the above argument and find \(n'', \omega''\) and \(j''\) such that \(\omega'' \supset \omega^*\), \(n''(\omega') = n'(\omega')\) and \(C_{n''(\omega'), n''(\omega''*)} \geq p^{-j}\lambda\). Note that \(n''(\omega') = n'(\omega')\) implies \(n''(\omega) = n'(\omega) = n(\omega)\). If \((n''(\omega^*), \omega^*) \in \Lambda^*_j\), we stop as before. Otherwise we continue until we reach a pair \((n_0(\omega^*_0), \omega^*_0)\) in \(\Lambda^*_j\) or reach \(\omega^*_0 = G\). If \(\omega^*_0 = G\), \(p^{-j}\lambda \leq C_{n_0(\omega^*_0), \omega^*_0} < \lambda\) since \(\omega^*_0 \subset E_2\). Hence there exists \(j_0\) such that \(1 \leq j_0 \leq j\) and

\[p^{-j_0}\lambda \leq C_{n_0(\omega^*_0), \omega^*_0} < p^{-j_0+1}\lambda. \]

The argument of the preceding paragraph now implies \((n_0(\omega^*_0), \omega^*_0) \in \Lambda^*_j\). Setting \(\bar{n} = n_0, \omega^* = \omega^*_0\), and \(j = j_0\), we obtain \(\bar{n}, \omega^*,\) and \(j\) as in (69).

Thus given any \(\omega^* \subset E\) and \(C_{n(\omega), \omega^*} \geq p^{-j}\lambda\), there exist \(\bar{n}, \omega^*,\) and \(j\) which satisfy (69) such that \(j\) is minimal. It now follows that, for any \(\omega\) such that \(\omega^* \subset \omega \subset \omega^*\),

\[C_{\bar{n}(\omega), \omega} < p^{-j+1}\lambda. \tag{73} \]

If (73) were false, the above argument applied to \((\bar{n}(\omega), \omega)\) would contradict the minimality of \(j\).

An additional estimate. An additional estimate is required because of the above change of pairs. Let \((n(\omega^*), \omega^*) \in \Lambda^*_j, \omega^* \subset E, \omega^* \in G/G_1\), so that \(\Pi(n(\omega^*), \omega^*, j)\) is defined. Let \(\omega^*_1\) be a partition element. We wish to estimate \(S_{n(\omega^*_1)} f(x) - S_{n(\omega)} f(x)\) where \(x \in \omega_1\). We have

\[|S_{n(\omega^*_1)} f(x) - S_{n(\omega)} f(x)| \]

\[= \left| \int_G f(t) (D_{n(\omega^*_1)}(x - t) - D_{n(\omega)}(x - t)) d\mu(t) \right| \]

\[= \left| \int_G f(t) \left\{ \chi_{n(\omega^*_1)}(x - t) \sum_{r=1}^\infty D_{n(\omega^*_1)}(x - t) \Phi_{n, \omega^*_1}(x - t) \right. \right. \]

\[- \chi_{n(\omega)}(x - t) \sum_{r=1}^\infty D_{n(\omega)}(x - t) \Phi_{n, \omega}(x - t) \left. \left. \right\} d\mu(t) \right|. \tag{74} \]

As before, both sums vanish if \(t \not\in \omega_1\), and \(\chi_{n(\omega^*_1)} = \chi_{n(\omega)}\), when the second sum fails to vanish. This allows us to write (74) as

\[|S_{n(\omega^*_1)} f(x) - S_{n(\omega)} f(x)| \]

\[= \left| \int_{\omega^*_1} f(t) \chi_{n(\omega^*_1)}(t) D_{n(\omega^*_1)}(x - t) \Phi_{n, \omega^*_1}(x - t) d\mu(t) \right| \]

\[= \left| \int_{\omega^*_1} f(t) \chi_{n(\omega^*_1)}(t) m(t) \left(\sum_{k=p_{r+1}-1}^{p_{r+1}} \chi_{n(\omega^*_1)}(x - t) \right) d\mu(t) \right| \]

\[\leq \sum_{k=p_{r+1}-1}^{p_{r+1}} |\mu(\omega^*_1)|^{-1} \left| \int_{\omega^*_1} f(t) \chi_{n(\omega^*_1)}(t) \Phi_{n, \omega^*_1}(x - t) d\mu(t) \right| \]

\[\leq \sum_{k=p_{r+1}-1}^{p_{r+1}} |\mu(\omega^*_1)|^{-1} \left| \int_{\omega^*_1} f(t) \chi_{n(\omega^*_1)}(t) d\mu(t) \right|. \tag{75} \]
In the last line we made use of the fact that \(\chi_{km} \) is constant on cosets of \(G_{n+1} \). For each \(\omega_1 \) with \(\omega_1^\dagger = \omega_1 \) we have

\[
\mu(\omega_1)^{-1} \left| \int_{\omega_1} f(t) \chi_{km}(t) \, d\mu(t) \right| \leq C_{m+1}(\omega_1^\dagger).
\]

Thus we have

\[
(76) \quad |S_{m+1}(f(x) - S_m(f(x))| \leq p^2 C_{m+1}(\omega_1^\dagger).
\]

Proof of \(L^2 \) result. We now prove that if \(x \in E = E(\lambda, N, f) \), \(|S_n(f(x))| \leq A\lambda \), \(1 \leq n \leq m_N \). Let \(\omega_0^* = G \). We may assume \(C_n(\omega_0^*) > 0 \). Then there exists \(j_0 \) such that \(p^{-j_0} \lambda \leq C_n(\omega_0^*) < p^{-j_0+1} \lambda \) since \(x \in E \) (see (53)). Then \((n, \omega_0^*) \in \Lambda_{j_0}^* \) and the partition \(\Pi(n, \omega_0^*, j_0) \) is defined. Let \(\omega_1^\dagger \) denote the partition element such that \(x \in \omega_1 \). Then by (64) and (65), we have

\[
(77) \quad |S_{m+1}(f(x) - S_m(f(x))| \leq p^{-j_0/2} \lambda.
\]

If \(n(\omega_1^\dagger) = 0 \), we stop. Otherwise we continue with a typical step: \(n(\omega_1^\dagger) \neq 0 \) implies \(\omega_1^\dagger \not\in G/G_N \). Since \(\omega_1^\dagger \in \Pi(n(\omega_0^*), \omega_0^*, j_0) \) and \(x \in E \) (see (53)) we have \(p^{-j_0+1} \lambda \leq C_{m+1}(\omega_1^\dagger) \lambda \). Hence there exists \(j_1 \) such that, \(1 \leq j_1 < j_0 \),

\[
p^{-j_1} \lambda \leq C_{m+1}(\omega_1^\dagger) \lambda < p^{-j_1+1} \lambda.
\]

By a change of pairs, we obtain \(\tilde{n}_1, \tilde{\omega}_1^\dagger, \tilde{j}_1 \) such that \(\tilde{n}_1(\omega_1) = n(\omega_1) \), \(\tilde{\omega}_1^\dagger \supset \omega_1^\dagger \), \((\tilde{n}(\omega_1^\dagger), \tilde{\omega}_1^\dagger) \in \Lambda_{j_1}^* \), and \(\tilde{j}_1 \) is minimal. Then the partition \(\Pi(\tilde{n}_1(\omega_1^\dagger), \tilde{\omega}_1^\dagger, \tilde{j}_1) \) is defined. Let \(\omega_2^\dagger \) be the partition element such that \(x \in \omega_2 \). Since

\[
(78) \quad C_{n_2(\omega_2^\dagger)}(\omega_2^\dagger) = C_{m+1}(\omega_1^\dagger) < p^{-j_1+1}\lambda \leq p^{-j_1+1}\lambda,
\]

it follows that \(\omega_2^\dagger \supset \omega_1^\dagger \). Hence \(\tilde{n}_1(\omega_1) = n(\omega_1) \) implies \(\tilde{n}_1(\omega_2^\dagger) = n_1(\omega_2^\dagger) \). We have

\[
(79) \quad |S_{m+1}(f(x) - S_m(f(x))| \leq |S_{m+1}(f(x) - S_{m_2}(f(x))| + |S_{n_2}(f(x) - S_{n_1}(f(x))| + |S_{n_1}(f(x) - S_{n_2}(f(x))| \leq 2p^{-j_1/2} \lambda + |S_{m_2}(f(x) - S_{m}(f(x))|
\]

by (64) and (65). Now (76) and (78) imply

\[
(80) \quad |S_{m_2}(f(x) - S_{m}(f(x))| \leq p^2 C_{m+1}(\omega_1^\dagger) \leq p^{-j_1+3}\lambda.
\]

Combining (79) and (80), we have

\[
(81) \quad |S_{m_2}(f(x) - S_{m}(f(x))| \leq (2p^{-j_1/2} + p^{-j_1+3}) \lambda.
\]

Combining (77) and (81), we obtain
\[|S_n f(x) - S_{n(\omega_2^*)} f(x)| \leq p^{-j_i/2} \lambda + \{2p^{-j_i/2} + p^{-j_i+3}\} \lambda. \]

If \(n(\omega_2^*) = 0 \), we stop. If \(n(\omega_2^*) \neq 0 \), we repeat the above step until we reach

\[G = \omega_i^* \supset \omega_{i-1}^* \supset \cdots \supset \omega_{i-r}^* \]

with \(n(\omega_i^*) \neq 0 \), \(i = 1, 2, \ldots, r - 1 \), \(n(\omega_r^*) = 0 \), and \(j_0 > j_1 > j_2 > \cdots > j_r \geq 1 \)

\[|S_{n(\omega_r^*)} f(x) - S_{n(\omega_{r+1}^*)} f(x)| < \{2p^{-j_i/2} + p^{-j_i+3}\} \lambda. \]

Then

\[|S_n f(x)| \leq \sum_{i=0}^{r-1} |S_{n(\omega_i^*)} f(x) - S_{n(\omega_{i+1}^*)} f(x)| \]
\[\leq 2\left(\sum_{j=1}^{\infty} p^{-j/2} \right) \lambda + p^3 \left(\sum_{j=1}^{\infty} p^{-j} \right) \lambda = A \lambda. \]

This completes the proof of the \(L^2 \) result.

IV. THE \(L^q \) RESULT

Basic result. To obtain the \(L^q \) result for \(1 < q < 2 \), some properties of Lorentz spaces \([6, \text{p.} 236] \) and an interpolation theorem of R. Hunt \([5] \) reduce the problem to the following

Basic result. Let \(1 < q < \infty, q \neq 2, \lambda > 0, \) and \(F \) be a measurable set in \(G \). Then there exists a constant \(A_q > 0, \) independent of \(\lambda \) and \(F \), such that

(82) \[\mu \{ x \in G : M_I F(x) > \lambda \} \leq A_q \lambda^{-q} \mu(F) \]

where \(I_F \) is the characteristic function of \(F \).

Since the proof of the basic result follows the \(L^2 \) proof closely, we shall only indicate the necessary modifications. We shall borrow all the notation of the \(L^2 \) proof. We may also assume \(\mu(F) < \lambda^q \).

Proof of basic result. We begin by defining

\[E_1 = \left\{ \omega : \mu(\omega)^{-1} \int_0^1 I_F(t) d\mu(t) \geq \lambda^q \right\} \quad \text{and} \]
\[E_i = \{ \omega^* : \omega \in E_i \}. \]

Then (6) and (83) imply

\[\sum_{\omega^* \in E_1} \mu(\omega^*) \leq p \sum_{\omega \in E_1} \mu(\omega) \]
\[\leq p \lambda^{-q} \sum_{\omega \in E_1} \int_0^1 I_F(t) d\mu(t) \]
\[\leq p \lambda^{-q} \mu(F). \]
Let \(L = L_q = [2q^2/(q - 1)] + 1 \) where \([x]\) denotes the greatest integer not greater than \(x\). Then if \((n(\omega), \omega) \in \Lambda_j, \omega \subset E_j\), we have

\[
\lambda^{-2} \leq p^L \lambda^{-q}.
\]

To see this we consider the cases \(1 < q < 2\) and \(q > 2\) separately. If \(1 < q < 2\), we have

\[
p^{-1} \lambda \leq |c(n(\omega))| \leq \mu(\omega)^{-1} \int_0 I_F(t) d\mu(t) \leq \lambda^q.
\]

This yields

\[
\lambda^{1-q} \leq p^j.
\]

Now for \(1 < q < 2\),

\[
(q - 2)(1 - q)^{-1} \leq 2q^2(q - 1)^{-1} \leq L.
\]

From (86) and (87) we have

\[
\lambda^{q-2} = (\lambda^{1-q})^{q-2}(1-q)^{-1} \leq (p^j)^L = p^L
\]

which is (85). In the case \(q > 2\), we have

\[
p^{-1} \lambda \leq |c(n(\omega))| \leq \mu(\omega)^{-1} \int_0 I_F(t) d\mu(t) \leq \mu(\omega \cap F)/\mu(\omega) \leq 1.
\]

Thus \(\lambda \leq p^j\) and so \(\lambda^{q-2} \leq p^{(q-2)} \leq p^L\), since \(q - 2 \leq L\), which is (85). Hence (85) is established. Applying (85) to (49), we obtain

\[
\sum_{n(\omega)} \mu(\omega) \leq p^{2j+2} \lambda^{-2} \mu(F) = p^{2j+2} \lambda^{-q} (\lambda^{q-2}) \mu(F)
\]

\[
\leq p^{2j+2} \lambda^{-q} (p^L) \mu(F) = p^{2j+2+L} \lambda^{-q} \mu(F)
\]

\[
\leq p^{4L} \lambda^{-q} \mu(F).
\]

As before, we use (88) to estimate \(\mu(E_2)\).

The partitions \(\Pi(n(\omega^*), \omega^*, j)\), the basic estimate, and the changing of pairs are the same as in the \(L^2\) proof. We modify the set \(E_2\) somewhat to compensate for the above estimate. Consider the operator \(E^* (S_{n(\omega)^*})\) which is sublinear and has strong type \((q, q)\) for \(1 < q < \infty\). Recall that \(\|E^*\|_q = O(1)\) as \(q \to \infty\) and \(\|S_{n(\omega)^*}\|_q = O(q)\) as \(q \to \infty\) independent of \(n(\omega^*)\). Hence \(\|E^* S_{n(\omega)^*}\|_q = O(q)\) as \(q \to \infty\) independent of \(n(\omega^*)\). By extrapolation [16, p. 119, vol. 2], there exist positive constants \(A_1\) and \(A_2\) such that
\(\mu(x \in \omega^*: |E^* S_{\omega^*}^* h(x)| > A_1 \lambda) \leq \exp(-A_2 \lambda \|h\|_{\infty}) \mu(\omega^*). \)

For the moment, let \(R \) denote an absolute constant to be determined later. We define

\(\mathcal{V}(n(\omega^*), \omega^*, j) = \{x \in \omega^*: |E^* (S_{\omega^*}^* h)(x)| > A_1 C j L p^{-j+1} \lambda\}. \)

Then by (89) and (60), we have

\[
\mu(\mathcal{V}(n(\omega^*), \omega^*, j)) \leq \exp(-A_2 C j L p^{-j+1} \lambda \|h\|_{\infty}) \mu(\omega^*)
\]

\[
\leq \exp(-A_2 C j L) \mu(\omega^*).
\]

We now choose \(C \) such that \(A_2 C \geq 5 \log p \). Then from (91) we obtain

\[
\mu(\mathcal{V}(n(\omega^*), \omega^*, j)) \leq \exp(-A_2 C j L) \mu(\omega^*)
\]

\[
\leq \exp(-5 \log L p) \mu(\omega^*)
\]

(92)

Summing over \(\omega^* \) and using (88) and (92), we obtain

\[
\mu(E_j) \leq \sum_{\omega^*} \mu(\mathcal{V}(n(\omega^*), \omega^*, j))
\]

(93)

\[
\leq p^{-5 \log L} \sum_{\omega^*} \mu(\omega^*)
\]

\[
\leq (p^{-5 \log L}) (p^{4L \lambda^{-q}}) \mu(F)
\]

\[= p^{-jL} \lambda^{-q} \mu(F). \]

Summing (93) over all \(j \), we have

\[
\mu(E) \leq \sum_{j=1}^{\infty} \mu(E_j)
\]

\[
\leq \left(\sum_{j=1}^{\infty} p^{-jL} \right) \lambda^{-q} \mu(F) \leq \left(\sum_{j=1}^{\infty} p^{-j} \right) \lambda^{-q} \mu(F). \]

We finally consider \(x \notin E = E_1 \cup E_2 \). As before, we assume \(c_n(\omega_0^*) > 0 \) where \(\omega_0^* = G \). Then there exists \(j_0 \geq 1 \) with \(p^{-j_0} \lambda \leq c_n(\omega_0^*) < p^{-j_0+1} \lambda \) since \(\omega_0^* \notin E \). Let \(\omega_1^* \) denote the partition element such that \(x \in \omega_1 \). Then (64) and (90) imply

(94)

\[
|S_n f(x) - S_{\omega_1^*} f(x)| \leq A_2 C j p^{-j+1} \lambda,
\]

where \(f = I_F \). If \(n(\omega_1^*) = 0 \), we stop. Otherwise we continue with a typical step. Since \(\omega_1^* \notin G/G_N \), there exists \(j_1 \) with \(1 \leq j_1 < j_0 \) such that

(95)

\[
p^{-j_1} \lambda \leq c_{n(\omega_1^*)} < p^{-j_1+1} \lambda.
\]
By a change of pairs, we obtain \(n_1, \hat{\omega}_1, \hat{j}_1 \) such that \(n(\omega_1) = n_1(\omega_1) = \hat{n}(\omega_1) \cap \omega_1 \), \((\hat{n}(\hat{\omega}_1), \hat{\omega}_1) \in \Lambda^* \), and \(\hat{j}_1 \) is minimal. Then \(\Pi(n(\hat{\omega}_1), \hat{\omega}_1, \hat{j}_1) \) is defined. Let \(\omega_2 \) be the partition element such that \(x \in \omega_2 \). Then as before \(\omega_2 \subseteq \omega_1 \), and \(n_1(\omega_1) = n(\omega_1) \) implies \(n_1(\omega_2) = n(\omega_2) \). We have, by (64), (76), (90) and (95),

\[
|S_{n(\omega_2)}f(x) - S_{n(\omega_2)}f(x)| \\
\leq |S_{n(\omega_2)}f(x) - S_{n(\omega_1)}f(x)| + |S_{n(\omega_1)}f(x) - S_{n(\hat{\omega}_1)}f(x)| \\
+ |S_{n(\hat{\omega}_1)}f(x) - S_{n(\omega_2)}f(x)| \\
\leq 2A_2Cj_1L^p\lambda + |S_{n(\omega_2)}f(x) - S_{n(\omega_1)}f(x)| \\
\leq 2A_2Cj_1L^p\lambda + p^2C_{n(\omega_1)}(\omega_1) \\
\leq 2A_2Cj_1L^p\lambda + p^2\lambda
\]

since \(\hat{j}_1 \) is minimal. Combining estimates (94) and (96), we have

\[
|S_{n}f(x) - S_{n(\omega_2)}f(x)| \leq 2A_2CLj_0p^{-j_0+1} + j_1p^{-j_1+1} + p^{-j_1+3}\lambda.
\]

If \(n(\omega_2) = 0 \), we stop. If \(n(\omega_2) \neq 0 \), we repeat the above procedure until we reach

\[
G = \omega_0 \supseteq \omega_1 \supseteq \omega_2 \supseteq \cdots \supseteq \omega_r
\]

with \(n(\omega_i) \neq 0 \), \(i = 1, 2, \ldots, r-1 \), \(n(\omega_r) = 0 \) and \(j_0 > j_1 > j_2 > \cdots > j_r \geq 1 \), with

\[
|S_{n(\omega_r)}f(x) - S_{n(\omega_1)}f(x)| \leq 2A_2CLj_0p^3\lambda.
\]

Then

\[
|S_{n}f(x)| \leq \sum_{r=0}^{r-1} |S_{n(\omega_r)}f(x) - S_{n(\omega_{r+1})}f(x)| \\
\leq \left(2A_2CL\left(\sum_{j=1}^{\infty} j^p \right) + p^3\left(\sum_{j=1}^{\infty} j^p \right) \right) \lambda.
\]

This establishes (82), the basic result, and completes the proof.

Bibliography

JOHN GOSSELIN

DEPARTMENT OF MATHEMATICS, SYRACUSE UNIVERSITY, SYRACUSE, NEW YORK 13210