A GEOMETRICAL CHARACTERIZATION OF BANACH SPACES WITH THE RADON-NIKODYM PROPERTY

BY

HUGH B. MAYNARD

ABSTRACT. A characterization of Banach spaces having the Radon-Nikodym property is obtained in terms of a convexity requirement on all bounded subsets. In addition a Radon-Nikodym theorem, utilizing this convexity property, is given for the Bochner integral and it is easily shown that this theorem is equivalent to the Phillips-Metivier Radon-Nikodym theorem as well as all the standard Radon-Nikodym theorems for the Bochner integral.

1. Introduction. Rieffel [9] proved a Radon-Nikodym theorem for the Bochner integral, using techniques established in [8], in an attempt to establish the Radon-Nikodym theorem of Phillips [7] and Metivier [5]. He was unable to establish it in the nonseparable case, the result depending upon a proof that every convex weakly compact set in a B-space is dentable. This circle of ideas was not closed until Troyanski [10] proved that a Banach space with a weakly compact fundamental subset is isomorphic to a locally uniformly convex Banach space. This is, as would be expected, much deeper than necessary and a simpler proof will be indicated in §2.

The obvious characterization of Banach spaces with the Radon-Nikodym property would seem to be that every bounded subset must be dentable. In §3 it is demonstrated that a characterization is that every bounded subset must be σ-dentable, where σ-dentability is a dentable type condition which is strictly weaker than dentability. It is however an open question if dentable and σ-dentable coincide in Banach spaces having the Radon-Nikodym property.

2. Dentability and σ-dentability with application to Phillip's Radon-Nikodym theorem. The following notation will be observed in the remainder of this paper. B will denote a Banach space and if $D \subset B$ then $c(D)$ and $c(D)$ will denote the convex hull of D and the closed convex hull of D, respectively. The open and closed spheres of radius r about $x \in B$ will be $S_r(x)$ and $\bar{S}_r(x)$. If (X, Σ, μ) is a totally finite positive measure space then $\Sigma^+ = \{E \in \Sigma: \mu(E) > 0\}$ and for a B-valued measure m on Σ, the average range of m over $E \in \Sigma^+$ with respect to μ is $A_E(m) = \{m(F)/\mu(F): F \subset E, F \in \Sigma^+\}$.

Definition 2.1. A set $D \subset B$ is σ-convex iff for every sequence $\{a_i\}_{i=1}^\infty$, $a_i \geq 0$, $\sum_{i=1}^\infty a_i = 1$, and for every sequence $\{d_i\}_{i=1}^\infty \subset D$ such that $\sum_{i=1}^\infty a_id_i$ converges, we have $\sum_{i=1}^\infty a_id_i \in D$.

Received by the editors November 29, 1971 and, in revised form, December 5, 1972.

Key words and phrases. Radon-Nikodym theorem, Radon-Nikodym property, Bochner integral, dentable, σ-dentable.

Copyright © 1974, American Mathematical Society
The σ-convex hull of $D \subseteq B$ is given by

$$\sigma(D) = \left\{ \sum_{i=1}^{\infty} a_i d_i : a_i \geq 0, \sum_{i=1}^{\infty} a_i = 1, \text{ and } \sum_{i=1}^{\infty} a_i d_i \text{ converges} \right\}.$$

If D is bounded then the infinite convex sums in $\sigma(D)$ always exist. We may also assume that the constants $a_i > 0$. In addition we always have the following relations:

$$D \subseteq c(D) \subseteq \sigma(D) \subseteq \varepsilon(D)$$

where the inclusions may be strict.

We now recall the definition of dentable and introduce the concept of σ-dentable.

Definition 2.2. A set $D \subseteq B$ is dentable [σ-dentable] iff for each $\epsilon > 0$ there exists $d \in D$, such that

$$d \in \varepsilon(D - S_\epsilon(d)) \quad [d \in \sigma(D - S_\epsilon(d))].$$

If D is not dentable [σ-dentable] then any number $\epsilon > 0$ such that for all $d \in D$, $d \in \varepsilon(D - S_\epsilon(d))$ [$d \in \sigma(D - S_\epsilon(d))$] is called a dentable limit [σ-dentable limit] for the set D.

The following lemma is immediate.

Lemma 2.1. If $D \subseteq B$ is dentable then it is σ-dentable.

Example. By considering the following subset of $L'(X, \Sigma, \mu)$ where (X, Σ, μ) is a nonatomic, finite, positive measure space with $\mu(X) = 1$, we can see that σ-dentable is a strictly weaker concept than dentable.

Let P be the positive cone in $L'(X, \Sigma, \mu)$ and U_1 be the unit cell [$U_1 = \{ f : \|f\| = 1 \}$] in $L'(X, \Sigma, \mu)$. Then if $D = \bigcup_{\theta < \epsilon} e^{i\theta} P \cap U_1$ $\cup \{1\}$ it is easy to establish that the constant function 1 is a σ-denting point for D [i.e. $\forall \epsilon > 0$, 1 is the appropriate element of D] and yet D is not dentable.

In order to prove dentability or σ-dentability of a set it is often possible to reduce the problem to the consideration of countable sets.

Lemma 2.2. If $D \subseteq B$ has the property that every countable subset is dentable (σ-dentable) then D is dentable (σ-dentable).

Proof. The proof of the σ-dentable assertion is entirely analogous to that of the dentable case and thus we will only prove the dentable assertion.

Suppose D is not dentable. Then there exists $\epsilon > 0$ such that ϵ is a dentable limit for D. Now for each $x \in D$ there exists a countable set $A_x \subset D - S_\epsilon(x)$ such that $x \in \varepsilon(A_x)$.

Define by induction a sequence $\{A_n\}$ of subsets as follows. Pick any $x \in D$ and set $A_1 = \{x\}$. Given A_{n-1} let $A_n = \bigcup\{A_x : x \in A_{n-1}\}$. Thus the set $A = \bigcup_{n=1}^{\infty} A_n \subset D$ is countable and is clearly not dentable and hence the lemma is established.
Theorem 2.1. If $K \subset B$ is a relatively weakly compact set, then it is dentable.

Proof. By Lemma 2.2 we need only consider the case when B is separable. In this case the argument given by Rieffel [9, p. 76] or the argument by Namioka [6, p. 150] can be used to obtain the result.

An elementary proof of this fact can be obtained in the following manner.

It suffices to assume that K is a convex weakly compact set since Rieffel [9] showed that if $\mathcal{E}(D)$ is dentable then D is dentable.

Then by Lemma 2.2 it suffices to assume that B is separable. Suppose $\varepsilon > 0$ and let A be the set of extreme points of K. By the Krein-Milman theorem, $A \neq \emptyset$. Let $(x_i)_{i=1}^{\infty}$ be a dense subset in B; then since A^ω is weakly compact and since

$$
\mathcal{A}^\omega = \bigcup_{i=1}^{\infty} \mathcal{A}^\omega \cap [x_i + \mathcal{S}_{\varepsilon/2}(0)],
$$

there exists at least one i and a weak convex neighborhood N such that $\mathcal{A}^\omega \cap [x_i + \mathcal{S}_{\varepsilon/2}(0)]$ contains $N \cap \mathcal{A}^\omega$. This follows since \mathcal{A}^ω is a Baire space and since $\mathcal{S}_{\varepsilon/2}(0) = \mathcal{S}_{\varepsilon}(0)$.

Thus there exists $x \in A$ such that x is in the interior of N and the diameter of $N \cap \mathcal{A}^\omega$ is bounded by $\varepsilon/2$.

Let $K_1 = \mathcal{E}(K \sim N)$, $K_2 = \mathcal{E}(N \cap A)$. K_1 and K_2 are both weakly compact, convex, and disjoint. Thus

$$
c(K_1 \cup K_2) = \mathcal{E}(K_1 \cup K_2)
$$

$$
= \{\lambda x_1 + (1 - \lambda)x_2: 0 \leq \lambda \leq 1, x_1 \in K_1, x_2 \in K_2\}.
$$

The diameters of K_1 and K_2 have the following bounds: $\delta(K_2) \leq \varepsilon/2$ and if $d = \delta(K) < \infty$, $\delta(K_i) \leq d$. Assume $d \neq 0$. Let $C = \{\lambda x_1 + (1 - \lambda)x_2: x_1 \in K_1, x_2 \in K_2, \varepsilon/4d < \lambda \leq 1\}$. Thus $C \supset K_1$ and C is weakly compact. Suppose $y_1, y_2 \in K \sim C$. Then

$$
y_i = \lambda_i x_1 + (1 - \lambda_i)x_2^i, \quad 0 \leq \lambda_i < \varepsilon/4d, x_1^i \in K_1, x_2^i \in K_2, i = 1, 2.
$$

Thus

$$
\|y_1 - y_2\| \leq |\lambda_1| \|x_1 - x_1^2\| + \|x_1 - x_2\| + |\lambda_2| \|x_1^i - x_2^i\| + \varepsilon/4d \cdot d + \varepsilon/2 + (\varepsilon/4d) \cdot d = \varepsilon.
$$

Thus if $N_1 = N \sim C$, N_1 is weakly open, $x \in N_1$, and the diameter of $N_1 \cap K$ is less than ε. Thus $x \notin K \sim S_{\varepsilon}(x)$ since $S_{\varepsilon}(x) \supset N_1 \cap K$. Thus since x is an extreme point of K, $x \notin \mathcal{E}(K \sim S_{\varepsilon}(x))$ and K is dentable.

The following theorem is due to Rieffel [9, Theorem 1, p. 71] and is obtained by replacing dentable with ε-dentable, the proof remaining essentially the same. We include a proof using the locally small average range Radon-Nikodym
Theorem 2.2. Let \((X, \Sigma, \mu)\) be a totally finite positive measure space and let \(B\) be a Banach space. Let \(m\) be a \(B\)-valued measure on \(\Sigma\). Then there is a \(B\)-valued Bochner integrable function \(f\) on \(X\) such that \(m(E) = \int_E f \, d\mu\) for all \(E \in \Sigma\), iff
\begin{enumerate}[(i)] \item \(m\) is \(\mu\)-continuous, \item \(|m(X)| < \infty\), \item \(m\) has locally \(\sigma\)-dentable average range, that is, given \(E \in \Sigma^+\), there exists \(F \subset E, F \in \Sigma^+\), such that \(A_F(m)\) is \(\sigma\)-dentable. \end{enumerate}

Proof. \((\Rightarrow)\) This is immediate from Theorem 1, Rieffel [9, p. 71] and Lemma 2.1.

\((\Leftarrow)\) Let \(E \in \Sigma^+\) and \(\epsilon > 0\) be given. Then there exists \(E_d \subset E, E_d \in \Sigma^+\), such that \(A_{E_d}(m)\) is \(\sigma\)-dentable. Thus choose \(b \in A_{E_d}(m)\) such that \(b \notin \sigma(A_{E_d}(m) - S_\nu(b))\). Suppose \(b = m(F_0) / \mu(F_0), F_0 \subset E_d, F_0 \in \Sigma^+\). Then by Theorem 3.1 and its corollary [4, p. 16], if \(b \in A(F_0, \epsilon) = \{r \in B : ||m(A) - r \mu(A)|| \leq \epsilon \mu(A), \forall A \subset F_0, A \in \Sigma^+\}\) we are done. So suppose \(b \notin A(F_0, \epsilon)\).

Claim. There exists \(F \subset F_0, F \in \Sigma^+\), such that \(b \in A(F, \epsilon)\).

Proof. Suppose not. Then the property that \(||m(E) / \mu(E) - b|| > \epsilon\) is a local null difference property and hence by the exhaustion principle [4, Lemma 1.1, p. 2] \(F_0 = \bigcup^n_{i=1} E_i\) where \(m(E_i) / \mu(E_i) \in A_{E_i}(m) \sim S_\nu(b) \subset A_{E_i}(m) \sim S_\nu(b)\), but \(m(F_0) / \mu(F_0) = \sum^n_{i=1} (\mu(E_i) / \mu(F_0)) m(E_i) / \mu(E_i) \in \sigma(A_{E_i}(m) \sim S_\nu(b))\) and this yields a contradiction.

Thus there must exist \(F \subset F_0 \subset E, F \in \Sigma^+\), such that \(b \in A(F, \epsilon)\) and by Theorem 3.1 and its corollary [4, p. 16] we have the desired conclusion.

Corollary [Phillips]. Let \((X, \Sigma, \mu)\) be a totally finite positive measure space and let \(B\) be a Banach space. Let \(m\) be a \(B\)-valued measure on \(\Sigma\). Then there is a \(B\)-valued Bochner integrable function \(f\) on \(X\), such that \(m(E) = \int_E f \, d\mu\), for all \(E \in \Sigma\), iff
\begin{enumerate}[(i)] \item \(m\) is \(\mu\)-continuous, \item \(|m(X)| < \infty\), and \item \(m\) has locally relatively weakly compact average range. \end{enumerate}

Proof. \((\Rightarrow)\) This follows from Rieffel [8, p. 466].

\((\Leftarrow)\) If \(m\) has locally relatively weakly compact average range then, by Theorem 2.1, \(m\) has locally dentable average range.

3. A geometric characterization of Banach spaces with the Radon-Nikodym property. The concept of \(\sigma\)-dentability allows us to obtain a relatively simple characterization of Banach spaces with the Radon-Nikodym property using Theorem 2.2.

Definition. A Banach space \(B\) has the Radon-Nikodym property (R-N property) iff for any totally finite positive measure space \((X, \Sigma, \mu)\) and any \(B\)-
valued μ-continuous measure m on Σ, with $|m|(X) < \infty$, there exists $f \in L^p_1(\Sigma, \mu, \mu)$ such that $m(E) = \int_E f \, d\mu$ for all $E \in \Sigma$.

Definition. A Banach space B is said to be a σ-dentable space iff every bounded set $K \subset B$ is σ-dentable.

It should be emphasized that it is not known if a σ-dentable space need have all of its bounded subsets dentable.

Theorem 3.1. A Banach space B has the Radon-Nikodym property iff B is a σ-dentable space.

Proof. (\Leftarrow) If B is a σ-dentable space then Theorem 2.2 immediately implies that B has the R-N property because any B-valued, μ-continuous measure of finite variation has locally bounded average range.

(\Rightarrow) Suppose B is not a σ-dentable space. Then there exists a bounded subset $K \subset B$ such that K is not σ-dentable. We will construct two regular measures m and μ which negate the Radon-Nikodym property.

Since K is bounded and not σ-dentable we can choose ϵ, N such that

(i) ϵ is a σ-dentable limit for K, and

(ii) $K \subset S_N(0)$.

Let $X = [0,1)$ and choose an increasing sequence of infinite partitions $(\pi_n)_{n=1}^\infty$ of X such that the following conditions are satisfied:

(i) $\pi_n = \{A^n_z\}_{z \in N^n}$ where each $A^n_z = [a^n_z, b^n_z)$.

(ii) For each $n, z \in N^n$, $A^n_z = \cup_{i=1}^\infty A^n_{(z,i)}$ where we consider $(z,i) \in N^{n+1}$.

(iii) For each $n, z \in N^n$, $b^n_{(z,i)} = a^n_{(z,i+1)}$. Thus the decomposition of each half open interval A^n_z proceeds from left to right.

We now define a ring of subsets \mathcal{R} of X. Let $\mathcal{R} = \{A \cup B : A$ is a finite union of A^*_i's and B is a finite union of sets of the form $\cup_{j=1}^\infty A^*_{(z,j)} = A^*_z \sim \cup_{j=1}^\infty A^*_{(z,j)}\}.$

We consider both \emptyset and X to be elements of \mathcal{R}. We will now define μ and m on \mathcal{R} and extend to regular countably additive measures on $\sigma(\mathcal{R})$, the σ-algebra generated by \mathcal{R}. $\sigma(\mathcal{R})$ consists of the Borel subsets of $[0,1)$.

Define μ and m by induction on the sequence of partitions. Let $\mu(\emptyset) = 0, m(\emptyset) = 0, \mu(X) = 1, m(X) = k$ where k is any element of K. Suppose μ and m are defined on the elements of π_n such that $m(A^*_z) / \mu(A^*_z) = k^*_z \in K$ for each $A^*_z \in \pi_n$. Then since K is not σ-dentable, $k^*_z = \sum_{i=1}^\infty \alpha^*_z(i) k^*_{(z,i)}$, $\alpha^*_z(i) > 0$, $\sum_{i=1}^\infty \alpha^*_z(i) = 1$ and $\{k^*_{(z,i)}\}_{i=1}^\infty \subset K \sim S_1(k^*_z)$. We now define $\mu(A^*_z) = \alpha^*_z(1) \mu(A^*_z)$ and $m(A^*_z) = \mu(A^*_z) k^*_{(z,1)}$. Let $\pi = \{A \subset X : A \in \pi_n$ for some $n\}.$

Thus m and μ are defined on each π_n and hence can be extended by finite additivity to all of \mathcal{R}.

Notice that the diameter of the average range of m over each A^*_z is at least ϵ. This fact, after extension to $\sigma(\mathcal{R})$, will yield the contradiction.

Notice also that the construction yields a "horizontal" countable additivity, that is,
Claim 1. \(\mu \) can be extended to a Borel measure on \([0,1)\) and hence is regular and countably additive.

Proof. It suffices to show that \(\mu \) is regular on \(\pi \) relative to \(\mathcal{R} \) since it is then regular on \(\mathcal{R} \) and hence has an extension to a Borel measure on \([0,1)\).

Let \(\epsilon > 0 \) be arbitrary and \(A \in \pi \). Then using the "horizontal" countable additivity there exists \(\{A_i\}_{i=1}^n \subset \pi \) such that

\[
\left| \mu(A) - \sum_{i=1}^n \mu(A_i) \right| < \epsilon.
\]

Thus we have

\[
\bigcup_{i=1}^n A_i \subset A,
\]

\(\bigcup_{i=1}^n A_i \) is compact and hence \(\mu \) is inner regular on \(A \).

Suppose \(A = [a, b) \). Then by choosing the tail end of the decomposition of the preceding interval, we can find a sequence \(\{A_i\}_{i=1}^\infty \) such that \(\mu(\bigcup_{i=1}^\infty A_i) < \epsilon \), \(\bigcup_{i=1}^\infty A_i \in \mathcal{R} \), and \((A \cup [\bigcup_{i=1}^\infty A_i])' \supset A \), where \(D' \) is the interior of \(D \). Thus \(\mu \) is outer regular on \(A \) and hence \(\mu \) is regular on all of \(\pi \).

Claim 2. \(m \) can be extended to a Borel measure on \([0,1)\) such that \(\|m(A)\| \leq N\mu(A) \) for all \(A \in \sigma(\mathcal{R}) \). Thus the extension is countably additive and regular.

Proof. Since \(\mu \) is regular and dominates \(m \) we can apply Theorem 1 [1, p. 62] of Dinucleanu which implies that \(m \) has a countably additive extension of finite variation such that \(m \) remains dominated by \(\mu \) and \(m \) is regular.

Claim 3. \(m \) is not an indefinite integral with respect to \(\mu \).

Proof. It suffices to show that, for \(B \in \sigma(\mathcal{R}) \), the average range of \(m \) over \(B \), \(A_B(m) \), has diameter not less than \(\epsilon/2 \). This sufficiency follows from Theorem 3.1 and its corollary [4, p. 16].

Let \(B \in \sigma(\mathcal{R}) \). Now by the regularity of \(\mu \) and \(m \) on \(\sigma(\mathcal{R}) \) we can choose a compact \(C \) and an open \(O \) such that (i) \(C \subset B \subset O \), and (ii) \(\mu(O - C) < (\epsilon/16 N)\mu(B) \).

Now those elements in \(\mathcal{R} \) of the form \(A_{(i, j)}^*(\mathcal{R}) \cup [\bigcup_{i=m}^{\infty} A_{(i, j - 1)}^*] \) form a base of the topology in \([0,1)\) and hence by the compactness of \(C \) and the openness of \(O \) we can find a finite number of these which cover \(C \) and are contained in \(O \). Thus there exists a disjoint sequence \(\{A_i\}_{i=1}^\infty \subset \pi \) such that \(C \subset \bigcup_{i=1}^\infty A_i \subset O \).

Now there must exist at least one set \(A_i \) such that \(\mu(A_i \sim B)/\mu(A_i) < \epsilon/8 N = \delta \) since if not, we have
Thus choose A_α such that

$$\mu(A_\alpha \sim B)/\mu(A_\alpha) < \varepsilon/8N.$$

Let $D = A_\alpha \cap B \in \sigma(\mathcal{F})$, then $D \subseteq B$ and $\mu(D) > 0$. Now by taking the next partition of A_α we get $A_\alpha = \bigcup_{i=1}^{\infty} C_k$ where the $\{C_k\}_{k=1}^{\infty} \subseteq \pi$ and are disjoint. Then there must exist a small ε such that

$$\mu(C_n \sim B) < (\varepsilon/16N)\mu(C_n).$$

since if not $\mu(A_\alpha \sim B) = \mu(\bigcup_{i=1}^{\infty}(C_n \sim B)) \geq (\varepsilon/8N) \sum_{i=1}^{\infty} \mu(C_n)$

$$= (\varepsilon/8N)\mu(A_\alpha)$$

which contradicts (\ast). Let $E = C_n \cap B$. Now from the construction of m and μ

$$\frac{m(A_\alpha)}{\mu(A_\alpha)} - \frac{m(C_n)}{\mu(C_n)} \geq \varepsilon.\]

In addition

$$\left\| \frac{m(D)}{\mu(D)} - \frac{m(A_\alpha)}{\mu(A_\alpha)} \right\| = \left\| \left(1 - \frac{\mu(D)}{\mu(A_\alpha)} \frac{m(D)}{\mu(D)} + \frac{\mu(A_\alpha \sim B)}{\mu(A_\alpha)} \frac{m(A_\alpha \sim B)}{\mu(A_\alpha \sim B)} \right) \right\|

\leq \frac{\mu(A_\alpha \sim B)}{\mu(A_\alpha)} \left\{ \left\| \frac{m(D)}{\mu(D)} \right\| + \left\| \frac{m(A_\alpha \sim B)}{\mu(A_\alpha \sim b)} \right\| \right\} \leq \frac{\varepsilon}{4}.$$

In the same manner we get $\|m(E)/\mu(E) - m(n)/\mu(n)\| < \varepsilon/4$. Thus

$$\left\| \frac{m(E)}{\mu(E)} - \frac{m(D)}{\mu(D)} \right\| \geq \frac{\varepsilon}{2}.$$

Thus the diameter of $A_\alpha(m)$ is not less than $\varepsilon/2$ for all $B \in \sigma(\mathcal{F})$ and hence m is not an indefinite integral with respect to μ.

Thus B does not have the R-N property.

The following corollary is due to Uhl [11, Theorem 1, p. 2].

Corollary. If B is a Banach space such that every closed separable subspace of B is linearly homeomorphic to a subspace of a separable dual space, then B has the Radon-Nikodym property.

Proof. Suppose B satisfies the hypothesis of the corollary. Let K be any bounded set in B and D any countable subset of K. Then the closed linear span
$[D]$ of D is linearly homeomorphic to a subspace of a separable dual space. Since a linear homeomorphism maps σ-dentable sets into σ-dentable sets and since a separable dual space has the R-N property, D is mapped into a σ-dentable set and hence is itself σ-dentable. Thus K is σ-dentable and B has the R-N property.

REFERENCES

Department of Mathematics, University of Utah, Salt Lake City, Utah 84112