Structure theorems for certain topological rings
HTML articles powered by AMS MathViewer
 by James B. Lucke and Seth Warner PDF
 Trans. Amer. Math. Soc. 186 (1973), 6590 Request permission
Abstract:
A Hausdorff topological ring B is called centrally linearly compact if the open left ideals form a fundamental system of neighborhoods of zero and B is a strictly linearly compact module over its center. A topological ring A is called locally centrally linearly compact if it contains an open, centrally linearly compact subring. For example, a totally disconnected (locally) compact ring is (locally) centrally linearly compact, and a Hausdorff finitedimensional algebra with identity over a local field (a complete topological field whose topology is given by a discrete valuation) is locally centrally linearly compact. Let A be a Hausdorff topological ring with identity such that the connected component c of zero is locally compact, A/c is locally centrally linearly compact, and the center C of A is a topological ring having no proper open ideals. A general structure theorem for A is given that yields, in particular, the following consequences: (1) If the additive order of each element of A is infinite or squarefree, then $A = {A_0} \times D$ where ${A_0}$ is a finitedimensional real algebra and D is the local direct product of a family $({A_\gamma })$ of topological rings relative to open subrings $({B_\gamma })$, where each $({A_\gamma })$ is the cartesian product of finitely many finitedimensional algebras over local fields. (2) If A has no nonzero nilpotent ideals, each ${A_\gamma }$ is the cartesian product of finitely many full matrix rings over division rings that are finite dimensional over their centers, which are local fields. (3) If the additive order of each element of A is infinite or squarefree and if C contains an invertible, topologically nilpotent element, then A is the cartesian product of finitely many finitedimensional algebras over R, C, or local fields.References

N. Bourbaki, Éléments de mathématique. Part. 1. Les structures fondamentales de l’analyse. Livre III: Topologie générale. Chaps. III, IV, 3ième éd., Actualités Sci. Indust., no. 916, Hermann, Paris, 1960. MR 41 #984.
—, Éléments de mathématique. I: Les structures fondamentales de l’analyse. Fasc. VIII. Livre III: Topologie générale. Chap. 9: Utilisation des nombres réels en topologie générale, 2ième éd., Actualités Sci. Indust., no. 1045, Hermann, Paris; English transl., Hermann, Paris; AddisonWesley, Reading, Mass., 1966. MR 30 #3439; MR 34 #5044b.
—, Éléments de mathématique. Fasc. XV. Livre V: Espaces vectoriels topologiques. Chap. 1: Espaces vectoriels topologiques sur un corps valué. Chap. 2: Ensembles convexes et espaces localement convexes, 2ième éd., Hermann, Paris, 1966. MR 34 #3277.
—, Éléments de mathématique. Fasc. XXVII. Algèbre commutative. Chap. 3: Graduations, filtrations et topologies. Chap. 4: Idéaux prémiers as sociés et décomposition primaire, Actualités Sci. Indust., no. 1293, Hermann, Paris, 1961. MR 30 #2027.
 N. Bourbaki, Éléments de mathématique. Fasc. XXX. Algèbre commutative. Chapitre 5: Entiers. Chapitre 6: Valuations, Actualités Scientifiques et Industrielles [Current Scientific and Industrial Topics], No. 1308, Hermann, Paris, 1964 (French). MR 0194450
 I. S. Cohen, On the structure and ideal theory of complete local rings, Trans. Amer. Math. Soc. 59 (1946), 54–106. MR 16094, DOI 10.1090/S00029947194600160943
 Oscar Goldman and Chihhan Sah, On a special class of locally compact rings, J. Algebra 4 (1966), 71–95. MR 195908, DOI 10.1016/00218693(66)900524
 Nathan Jacobson, Structure of rings, American Mathematical Society Colloquium Publications, Vol. 37, American Mathematical Society, 190 Hope Street, Providence, R.I., 1956. MR 0081264
 Irving Kaplansky, Topological rings, Amer. J. Math. 69 (1947), 153–183. MR 19596, DOI 10.2307/2371662
 Irving Kaplansky, Locally compact rings, Amer. J. Math. 70 (1948), 447–459. MR 24887, DOI 10.2307/2372343
 Horst Leptin, Linear kompakte Moduln und Ringe, Math. Z. 62 (1955), 241–267 (German). MR 69811, DOI 10.1007/BF01180634
 Masayoshi Nagata, Local rings, Interscience Tracts in Pure and Applied Mathematics, No. 13, Interscience Publishers (a division of John Wiley & Sons, Inc.), New YorkLondon, 1962. MR 0155856
 Seth Warner, Locally compact rings having a topologically nilpotent unit, Trans. Amer. Math. Soc. 139 (1969), 145–154. MR 241479, DOI 10.1090/S00029947196902414795
 Seth Warner, Openly embedding local noetherian domains, J. Reine Angew. Math. 253 (1972), 146–151. MR 297747, DOI 10.1515/crll.1972.253.146
 Seth Warner, Linearly compact rings and modules, Math. Ann. 197 (1972), 29–43. MR 297822, DOI 10.1007/BF01427950
 Seth Warner, A topological characterization of complete, discretely valued fields, Pacific J. Math. 48 (1973), 293–298. MR 327726
 Oscar Zariski and Pierre Samuel, Commutative algebra, Volume I, The University Series in Higher Mathematics, D. Van Nostrand Co., Inc., Princeton, New Jersey, 1958. With the cooperation of I. S. Cohen. MR 0090581 —, Commutative algebra. Vol. 2, University Series in Higher Math., Van Nostrand, Princeton, N. J., 1960. MR 22 #11006.
Additional Information
 © Copyright 1973 American Mathematical Society
 Journal: Trans. Amer. Math. Soc. 186 (1973), 6590
 MSC: Primary 16A60
 DOI: https://doi.org/10.1090/S0002994719730325713X
 MathSciNet review: 0325713