## Ergodicity of the Cartesian product

HTML articles powered by AMS MathViewer

- by Elias G. Flytzanis PDF
- Trans. Amer. Math. Soc.
**186**(1973), 171-176 Request permission

## Abstract:

${h_1}$ is an ergodic conservative transformation on a $\sigma$-finite measure space and ${h_2}$ is an ergodic measure preserving transformation on a finite measure space. We study the point spectrum properties of ${h_1} \times {h_2}$. In particular we show ${h_1} \times {h_2}$ is ergodic if and only if ${h_1} \times {h_2}$ have no eigenvalues in common other than the eigenvalue 1. The conditions on ${h_1},{h_2}$ stated above are in a sense the most general for the validity of this result.## References

- Anatole Beck,
*Eigen operators of ergodic transformations*, Trans. Amer. Math. Soc.**94**(1960), 118–129. MR**152631**, DOI 10.1090/S0002-9947-1960-0152631-3 - R. V. Chacon,
*A class of linear transformations*, Proc. Amer. Math. Soc.**15**(1964), 560–564. MR**165071**, DOI 10.1090/S0002-9939-1964-0165071-7 - Nelson Dunford and Jacob T. Schwartz,
*Linear Operators. I. General Theory*, Pure and Applied Mathematics, Vol. 7, Interscience Publishers, Inc., New York; Interscience Publishers Ltd., London, 1958. With the assistance of W. G. Bade and R. G. Bartle. MR**0117523** - Nathaniel A. Friedman,
*Introduction to ergodic theory*, Van Nostrand Reinhold Mathematical Studies, No. 29, Van Nostrand Reinhold Co., New York-Toronto, Ont.-London, 1970. MR**0435350** - Harry Furstenberg,
*Disjointness in ergodic theory, minimal sets, and a problem in Diophantine approximation*, Math. Systems Theory**1**(1967), 1–49. MR**213508**, DOI 10.1007/BF01692494 - Paul R. Halmos,
*Lectures on ergodic theory*, Chelsea Publishing Co., New York, 1960. MR**0111817** - Paul R. Halmos,
*Measure Theory*, D. Van Nostrand Co., Inc., New York, N. Y., 1950. MR**0033869** - K. Jacobs,
*Lecture notes on ergodic theory, 1962/63. Parts I, II*, Aarhus Universitet, Matematisk Institut, Aarhus, 1963. MR**0159922** - Branko Kronfeld,
*Ergodic transformations and independence*, Glasnik Mat. Ser. III**5(25)**(1970), 221–226 (English, with Serbo-Croatian summary). MR**276442** - S. Kakutani and W. Parry,
*Infinite measure preserving transformations with “mixing”*, Bull. Amer. Math. Soc.**69**(1963), 752–756. MR**153815**, DOI 10.1090/S0002-9904-1963-11022-8 - Donald S. Ornstein,
*On invariant measures*, Bull. Amer. Math. Soc.**66**(1960), 297–300. MR**146350**, DOI 10.1090/S0002-9904-1960-10478-8 - Frank Hahn and William Parry,
*Some characteristic properties of dynamical systems with quasi-discrete spectra*, Math. Systems Theory**2**(1968), 179–190. MR**230877**, DOI 10.1007/BF01692514

## Additional Information

- © Copyright 1973 American Mathematical Society
- Journal: Trans. Amer. Math. Soc.
**186**(1973), 171-176 - MSC: Primary 28A65
- DOI: https://doi.org/10.1090/S0002-9947-1973-0328021-6
- MathSciNet review: 0328021