Dirichlet problem for degenerate elliptic equations
HTML articles powered by AMS MathViewer
- by Avner Friedman and Mark A. Pinsky
- Trans. Amer. Math. Soc. 186 (1973), 359-383
- DOI: https://doi.org/10.1090/S0002-9947-1973-0328345-2
- PDF | Request permission
Abstract:
Let ${L_0}$ be a degenerate second order elliptic operator with no zeroth order term in an m-dimensional domain G, and let $L = {L_0} + c$. One divides the boundary of G into disjoint sets ${\Sigma _1},{\Sigma _2},{\Sigma _3};{\Sigma _3}$ is the noncharacteristic part, and on ${\Sigma _2}$ the “drift” is outward. When c is negative, the following Dirichlet problem has been considered in the literature: $Lu = 0$ in G, u is prescribed on ${\Sigma _2} \cup {\Sigma _3}$. In the present work it is assume that $c \leq 0$. Assuming additional boundary conditions on a certain finite number of points of ${\Sigma _1}$, a unique solution of the Dirichlet problem is established.References
- M. I. Freĭdlin, The smoothness of the solutions of degenerate elliptic equations, Izv. Akad. Nauk SSSR Ser. Mat. 32 (1968), 1391–1413 (Russian). MR 0237944
- Avner Friedman, Partial differential equations of parabolic type, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1964. MR 0181836
- Avner Friedman and Mark A. Pinsky, Asymptotic behavior of solutions of linear stochastic differential systems, Trans. Amer. Math. Soc. 181 (1973), 1–22. MR 319268, DOI 10.1090/S0002-9947-1973-0319268-3
- Avner Friedman and Mark A. Pinsky, Asymptotic stability and spiraling properties for solutions of stochastic equations, Trans. Amer. Math. Soc. 186 (1973), 331–358 (1974). MR 329031, DOI 10.1090/S0002-9947-1973-0329031-5
- J. J. Kohn and L. Nirenberg, Degenerate elliptic-parabolic equations of second order, Comm. Pure Appl. Math. 20 (1967), 797–872. MR 234118, DOI 10.1002/cpa.3160200410
- M. Pinsky, A note on degenerate diffusion processes, Teor. Verojatnost. i Primenen. 14 (1969), 522–527 (English, with Russian summary). MR 0263174
- D. Stroock and S. R. S. Varadhan, On degenerate elliptic-parabolic operators of second order and their associated diffusions, Comm. Pure Appl. Math. 25 (1972), 651–713. MR 387812, DOI 10.1002/cpa.3160250603
Bibliographic Information
- © Copyright 1973 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 186 (1973), 359-383
- MSC: Primary 35J70; Secondary 60H15
- DOI: https://doi.org/10.1090/S0002-9947-1973-0328345-2
- MathSciNet review: 0328345