Asymptotic stability and spiraling properties for solutions of stochastic equations
HTML articles powered by AMS MathViewer
- by Avner Friedman and Mark A. Pinsky
- Trans. Amer. Math. Soc. 186 (1973), 331-358
- DOI: https://doi.org/10.1090/S0002-9947-1973-0329031-5
- PDF | Request permission
Abstract:
We consider a system of Itô equations in a domain in ${R^d}$. The boundary consists of points and closed surfaces. The coefficients are such that, starting for the exterior of the domain, the process stays in the exterior. We give sufficient conditions to ensure that the process converges to the boundary when $t \to \infty$. In the case of plane domains, we give conditions to ensure that the process “spirals"; the angle obeys the strong law of large numbers.References
- D. G. Aronson and P. Besala, Parabolic equations with unbounded coefficients, J. Differential Equations 3 (1967), 1–14. MR 208160, DOI 10.1016/0022-0396(67)90002-2 M. I. Friedlin, On the factorization of non-negative definite symmetric matrices, Teor. Verojatnost. i Primenen. 13 (1968), 375-378 = Theor. Probability Appl. 13 (1968), 354-356. MR 37 #5243.
- Avner Friedman, Partial differential equations of parabolic type, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1964. MR 0181836
- Avner Friedman and Mark A. Pinsky, Asymptotic behavior of solutions of linear stochastic differential systems, Trans. Amer. Math. Soc. 181 (1973), 1–22. MR 319268, DOI 10.1090/S0002-9947-1973-0319268-3
- I. I. Gihman and A. V. Skorohod, Stokhasticheskie differentsial′nye uravneniya, Izdat. “Naukova Dumka”, Kiev, 1968 (Russian). MR 0263172
- Marston Morse, A reduction of the Schoenflies extension problem, Bull. Amer. Math. Soc. 66 (1960), 113–115. MR 117694, DOI 10.1090/S0002-9904-1960-10420-X
- M. Pinsky, A note on degenerate diffusion processes, Teor. Verojatnost. i Primenen. 14 (1969), 522–527 (English, with Russian summary). MR 0263174
Bibliographic Information
- © Copyright 1973 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 186 (1973), 331-358
- MSC: Primary 60H10; Secondary 60J60
- DOI: https://doi.org/10.1090/S0002-9947-1973-0329031-5
- MathSciNet review: 0329031