Uncomplemented $C(X)$-subalgebras of $C(X)$
HTML articles powered by AMS MathViewer
- by John Warren Baker
- Trans. Amer. Math. Soc. 186 (1973), 1-15
- DOI: https://doi.org/10.1090/S0002-9947-1973-0331034-1
- PDF | Request permission
Abstract:
In this paper, the uncomplemented subalgebras of the Banach algebra $C(X)$ which are isometrically and algebraically isomorphic to $C(X)$ are investigated. In particular, it is shown that if X is a 0-dimensional compact metric space with its $\omega$th topological derivative ${X^{(\omega )}}$ nonempty, then there is an uncomplemented subalgebra of $C(X)$ isometrically and algebraically isomorphic to $C(X)$. For each ordinal $\alpha \geq 1$, a class ${\mathcal {C}_\alpha }$ of homeomorphic 0-dimensional uncountable compact metric spaces is introduced. It is shown that each uncountable 0-dimensional compact metric space contains an open-and-closed subset which belongs to some ${\mathcal {C}_\alpha }$.References
- D. Amir, Continuous functions’ spaces with the separable projection property, Bull. Res. Council Israel Sect. F 10F (1962), 163–164 (1962). MR 150570
- D. Amir, Projections onto continuous function spaces, Proc. Amer. Math. Soc. 15 (1964), 396–402. MR 165350, DOI 10.1090/S0002-9939-1964-0165350-3
- Richard Arens, Projections on continuous function spaces, Duke Math. J. 32 (1965), 469–478. MR 181882
- John Warren Baker, Some uncomplemented subspaces of $C(X)$ of the type $C(Y)$, Studia Math. 36 (1970), 85–103. MR 275356, DOI 10.4064/sm-36-2-85-103
- John Warren Baker, Compact spaces homeomorphic to a ray of ordinals, Fund. Math. 76 (1972), no. 1, 19–27. MR 307197, DOI 10.4064/fm-76-1-19-27
- John Warren Baker, Dispersed images of topological spaces and uncomplemented subspaces of $C(X)$, Proc. Amer. Math. Soc. 41 (1973), 309–314. MR 320984, DOI 10.1090/S0002-9939-1973-0320984-3
- John Warren Baker, Ordinal subspaces of topological spaces, General Topology and Appl. 3 (1973), 85–91. MR 324623
- John Warren Baker, Projection constants for $C(S)$ spaces with the separable projection property, Proc. Amer. Math. Soc. 41 (1973), 201–204. MR 320707, DOI 10.1090/S0002-9939-1973-0320707-8
- John Warren Baker and R. C. Lacher, Some mappings which do not admit an averaging operator, Pacific J. Math. 62 (1976), no. 1, 43–48. MR 511834 N. Bourbaki, Eléments de mathématique. Part. 1. Les structures fondamentales de l’analyse. Livre III: Topologie générale, Actualités Sci. Indust., no. 1029, Hermann, Paris, 1947; English transl., Hermann, Paris; Addison-Wesley, Reading, Mass., 1966. MR 9, 261; 34 #5044b.
- Seymour Z. Ditor, On a lemma of Milutin concerning averaging operators in continuous function spaces, Trans. Amer. Math. Soc. 149 (1970), 443–452. MR 435921, DOI 10.1090/S0002-9947-1970-0435921-2
- Seymour Z. Ditor, Averaging operators in $C(S)$ and lower semicontinuous sections of continuous maps, Trans. Amer. Math. Soc. 175 (1973), 195–208. MR 312228, DOI 10.1090/S0002-9947-1973-0312228-8
- James Dugundji, Topology, Allyn and Bacon, Inc., Boston, Mass., 1966. MR 0193606
- Nelson Dunford and Jacob T. Schwartz, Linear Operators. I. General Theory, Pure and Applied Mathematics, Vol. 7, Interscience Publishers, Inc., New York; Interscience Publishers Ltd., London, 1958. With the assistance of W. G. Bade and R. G. Bartle. MR 0117523
- R. Engelking, Outline of general topology, North-Holland Publishing Co., Amsterdam; PWN—Polish Scientific Publishers, Warsaw; Interscience Publishers Division John Wiley & Sons, Inc., New York, 1968. Translated from the Polish by K. Sieklucki. MR 0230273
- Felix Hausdorff, Set theory, Chelsea Publishing Co., New York, 1957. Translated by John R. Aumann, et al. MR 0086020
- Edwin Hewitt and Karl Stromberg, Real and abstract analysis. A modern treatment of the theory of functions of a real variable, Springer-Verlag, New York, 1965. MR 0188387
- John L. Kelley, General topology, D. Van Nostrand Co., Inc., Toronto-New York-London, 1955. MR 0070144
- Kiiti Morita and Sitiro Hanai, Closed mappings and metric spaces, Proc. Japan Acad. 32 (1956), 10–14. MR 87077
- A. Pełczyński and Z. Semadeni, Spaces of continuous functions. III. Spaces $C(\Omega )$ for $\Omega$ without perfect subsets, Studia Math. 18 (1959), 211–222. MR 107806, DOI 10.4064/sm-18-2-211-222
- A. Pełczyński, Linear extensions, linear averagings, and their applications to linear topological classification of spaces of continuous functions, Dissertationes Math. (Rozprawy Mat.) 58 (1968), 92. MR 227751
- A. Pełczyński, On $C(S)$-subspaces of separable Banach spaces, Studia Math. 31 (1968), 513–522. MR 234261, DOI 10.4064/sm-31-5-513-522
- R. S. Pierce, Existence and uniqueness theorems for extensions of zero-dimensional compact metric spaces, Trans. Amer. Math. Soc. 148 (1970), 1–21. MR 254804, DOI 10.1090/S0002-9947-1970-0254804-4
- Z. Semadeni, Sur les ensembles clairsemés, Rozprawy Mat. 19 (1959), 39 pp. (1959) (French). MR 107849
- Waclaw Sierpinski, General topology, Mathematical Expositions, No. 7, University of Toronto Press, Toronto, 1952. Translated by C. Cecilia Krieger. MR 0050870
- A. H. Stone, Metrizability of decomposition spaces, Proc. Amer. Math. Soc. 7 (1956), 690–700. MR 87078, DOI 10.1090/S0002-9939-1956-0087078-6
Bibliographic Information
- © Copyright 1973 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 186 (1973), 1-15
- MSC: Primary 46E15
- DOI: https://doi.org/10.1090/S0002-9947-1973-0331034-1
- MathSciNet review: 0331034