Complex Lindenstrauss spaces with extreme points
HTML articles powered by AMS MathViewer
- by B. Hirsberg and A. J. Lazar
- Trans. Amer. Math. Soc. 186 (1973), 141-150
- DOI: https://doi.org/10.1090/S0002-9947-1973-0333671-7
- PDF | Request permission
Abstract:
We prove that a complex Lindenstrauss space whose unit ball has at least one extreme point is isometric to the space of complex valued continuous affine functions on a Choquet simplex. If X is a compact Hausdorff space and $A \subset {C_{\text {C}}}(X)$ is a function space then A is a Lindenstrauss space iff A is selfadjoint and Re A is a real Lindenstrauss space.References
- Erik M. Alfsen, Compact convex sets and boundary integrals, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 57, Springer-Verlag, New York-Heidelberg, 1971. MR 0445271
- Leonard Asimow, Decomposable compact convex sets and peak sets for function spaces, Proc. Amer. Math. Soc. 25 (1970), 75–79. MR 259607, DOI 10.1090/S0002-9939-1970-0259607-8
- Edward G. Effros, On a class of real Banach spaces, Israel J. Math. 9 (1971), 430–458. MR 296658, DOI 10.1007/BF02771459 —, On a class of complex Banach spaces (to appear).
- Bent Hirsberg, Représentations intégrales des formes linéaires complexes, C. R. Acad. Sci. Paris Sér. A-B 274 (1972), A1222–A1224 (French). MR 296668
- Otte Hustad, A norm preserving complex Choquet theorem, Math. Scand. 29 (1971), 272–278 (1972). MR 322490, DOI 10.7146/math.scand.a-11053
- A. J. Lazar and J. Lindenstrauss, On Banach spaces whose duals are $L_{1}$ spaces, Israel J. Math. 4 (1966), 205–207. MR 206670, DOI 10.1007/BF02760079
- Joram Lindenstrauss, Extension of compact operators, Mem. Amer. Math. Soc. 48 (1964), 112. MR 179580
- E. Michael and A. Pełczyński, Separable Banach spaces which admit $l_{n}{}^{\infty }$ approximations, Israel J. Math. 4 (1966), 189–198. MR 211247, DOI 10.1007/BF02760077
- M. Zippin, On some subspaces of Banach spaces whose duals are $L_{1}$ spaces, Proc. Amer. Math. Soc. 23 (1969), 378–385. MR 246094, DOI 10.1090/S0002-9939-1969-0246094-0
Bibliographic Information
- © Copyright 1973 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 186 (1973), 141-150
- MSC: Primary 46B05; Secondary 46E15
- DOI: https://doi.org/10.1090/S0002-9947-1973-0333671-7
- MathSciNet review: 0333671