Convergence of sequences of semigroups of nonlinear operators with an application to gas kinetics
HTML articles powered by AMS MathViewer
- by Thomas G. Kurtz
- Trans. Amer. Math. Soc. 186 (1973), 259-272
- DOI: https://doi.org/10.1090/S0002-9947-1973-0336482-1
- PDF | Request permission
Erratum: Trans. Amer. Math. Soc. 209 (1975), 442.
Abstract:
Let ${A_1},{A_2}, \cdots$ be dissipative sets that generate semigroups of nonlinear contractions ${T_1}(t),{T_2}(t) \cdots$ Conditions are given on $\{ {A_n}\}$ which imply the existence of a limiting semigroup T(t). The results include types of convergence besides strong convergence. As an application, it is shown that solutions of the pair of equations \[ {u_t} = - \alpha {u_x} + {\alpha ^2}({v^2} - {u^2})\] and \[ {v_t} = \alpha {v_x} + {\alpha ^2}({u^2} - {v^2}),\] $\alpha$ a constant, approximate the solutions of \[ {u_t} = 1/4({d^2}/d{x^2}) \log u\] as $\alpha$ goes to infinity.References
- H. Brézis and A. Pazy, Convergence and approximation of semigroups of nonlinear operators in Banach spaces, J. Functional Analysis 9 (1972), 63–74. MR 0293452, DOI 10.1016/0022-1236(72)90014-6
- Howard E. Conner, Some general properties of a class of semilinear hyperbolic systems analogous to the differential-integral equations of gas dynamics, J. Differential Equations 10 (1971), 188–203. MR 289945, DOI 10.1016/0022-0396(71)90046-5
- M. G. Crandall and T. M. Liggett, Generation of semi-groups of nonlinear transformations on general Banach spaces, Amer. J. Math. 93 (1971), 265–298. MR 287357, DOI 10.2307/2373376
- Thomas G. Kurtz, Extensions of Trotter’s operator semigroup approximation theorems, J. Functional Analysis 3 (1969), 354–375. MR 0242016, DOI 10.1016/0022-1236(69)90031-7
- Thomas G. Kurtz, A general theorem on the convergence of operator semigroups, Trans. Amer. Math. Soc. 148 (1970), 23–32. MR 256210, DOI 10.1090/S0002-9947-1970-0256210-5
- Thomas G. Kurtz, A limit theorem for perturbed operator semigroups with applications to random evolutions, J. Functional Analysis 12 (1973), 55–67. MR 0365224, DOI 10.1016/0022-1236(73)90089-x
- Joel L. Mermin, An exponential limit formula for nonlinear semigroups, Trans. Amer. Math. Soc. 150 (1970), 469–476. MR 262873, DOI 10.1090/S0002-9947-1970-0262873-0
- Isao Miyadera, On the convergence of nonlinear semi-groups, Tohoku Math. J. (2) 21 (1969), 221–236. MR 247525, DOI 10.2748/tmj/1178242993
- Isao Miyadera, On the convergence of nonlinear semi-groups. II, J. Math. Soc. Japan 21 (1969), 403–412. MR 247526, DOI 10.2969/jmsj/02130403
- Isao Miyadera and Shinnosuke Ôharu, Approximation of semi-groups of nonlinear operators, Tohoku Math. J. (2) 22 (1970), 24–47. MR 262874, DOI 10.2748/tmj/1178242858
- Mark Pinsky, Differential equations with a small parameter and the central limit theorem for functions defined on a finite Markov chain, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 9 (1968), 101–111. MR 228067, DOI 10.1007/BF01851001
- H. F. Trotter, Approximation of semi-groups of operators, Pacific J. Math. 8 (1958), 887–919. MR 103420
- S. K. Godunov and U. M. Sultangazin, Discrete models of the Boltzmann kinetic equation, Uspehi Mat. Nauk 26 (1971), no. 3(159), 3–51 (Russian). MR 0293952
- Jerome A. Goldstein, Approximation of nonlinear semigroups and evolution equations, J. Math. Soc. Japan 24 (1972), 558–573. MR 306994, DOI 10.2969/jmsj/02440558 E. B. Dynkin, Markov processes. II, Fizmatgiz, Moscow, 1963; English transl., Die Grundlehren der math. Wissenschaften, Band 122, Academic Press, New York; Springer-Verlag, Berlin, 1965. MR 33 # 1887.
Bibliographic Information
- © Copyright 1973 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 186 (1973), 259-272
- MSC: Primary 47H15
- DOI: https://doi.org/10.1090/S0002-9947-1973-0336482-1
- MathSciNet review: 0336482