## Convergence of sequences of semigroups of nonlinear operators with an application to gas kinetics

HTML articles powered by AMS MathViewer

- by Thomas G. Kurtz
- Trans. Amer. Math. Soc.
**186**(1973), 259-272 - DOI: https://doi.org/10.1090/S0002-9947-1973-0336482-1
- PDF | Request permission

Erratum: Trans. Amer. Math. Soc.

**209**(1975), 442.

## Abstract:

Let ${A_1},{A_2}, \cdots$ be dissipative sets that generate semigroups of nonlinear contractions ${T_1}(t),{T_2}(t) \cdots$ Conditions are given on $\{ {A_n}\}$ which imply the existence of a limiting semigroup*T*(

*t*). The results include types of convergence besides strong convergence. As an application, it is shown that solutions of the pair of equations \[ {u_t} = - \alpha {u_x} + {\alpha ^2}({v^2} - {u^2})\] and \[ {v_t} = \alpha {v_x} + {\alpha ^2}({u^2} - {v^2}),\] $\alpha$ a constant, approximate the solutions of \[ {u_t} = 1/4({d^2}/d{x^2}) \log u\] as $\alpha$ goes to infinity.

## References

- H. Brézis and A. Pazy,
*Convergence and approximation of semigroups of nonlinear operators in Banach spaces*, J. Functional Analysis**9**(1972), 63–74. MR**0293452**, DOI 10.1016/0022-1236(72)90014-6 - Howard E. Conner,
*Some general properties of a class of semilinear hyperbolic systems analogous to the differential-integral equations of gas dynamics*, J. Differential Equations**10**(1971), 188–203. MR**289945**, DOI 10.1016/0022-0396(71)90046-5 - M. G. Crandall and T. M. Liggett,
*Generation of semi-groups of nonlinear transformations on general Banach spaces*, Amer. J. Math.**93**(1971), 265–298. MR**287357**, DOI 10.2307/2373376 - Thomas G. Kurtz,
*Extensions of Trotter’s operator semigroup approximation theorems*, J. Functional Analysis**3**(1969), 354–375. MR**0242016**, DOI 10.1016/0022-1236(69)90031-7 - Thomas G. Kurtz,
*A general theorem on the convergence of operator semigroups*, Trans. Amer. Math. Soc.**148**(1970), 23–32. MR**256210**, DOI 10.1090/S0002-9947-1970-0256210-5 - Thomas G. Kurtz,
*A limit theorem for perturbed operator semigroups with applications to random evolutions*, J. Functional Analysis**12**(1973), 55–67. MR**0365224**, DOI 10.1016/0022-1236(73)90089-x - Joel L. Mermin,
*An exponential limit formula for nonlinear semigroups*, Trans. Amer. Math. Soc.**150**(1970), 469–476. MR**262873**, DOI 10.1090/S0002-9947-1970-0262873-0 - Isao Miyadera,
*On the convergence of nonlinear semi-groups*, Tohoku Math. J. (2)**21**(1969), 221–236. MR**247525**, DOI 10.2748/tmj/1178242993 - Isao Miyadera,
*On the convergence of nonlinear semi-groups. II*, J. Math. Soc. Japan**21**(1969), 403–412. MR**247526**, DOI 10.2969/jmsj/02130403 - Isao Miyadera and Shinnosuke Ôharu,
*Approximation of semi-groups of nonlinear operators*, Tohoku Math. J. (2)**22**(1970), 24–47. MR**262874**, DOI 10.2748/tmj/1178242858 - Mark Pinsky,
*Differential equations with a small parameter and the central limit theorem for functions defined on a finite Markov chain*, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete**9**(1968), 101–111. MR**228067**, DOI 10.1007/BF01851001 - H. F. Trotter,
*Approximation of semi-groups of operators*, Pacific J. Math.**8**(1958), 887–919. MR**103420** - S. K. Godunov and U. M. Sultangazin,
*Discrete models of the Boltzmann kinetic equation*, Uspehi Mat. Nauk**26**(1971), no. 3(159), 3–51 (Russian). MR**0293952** - Jerome A. Goldstein,
*Approximation of nonlinear semigroups and evolution equations*, J. Math. Soc. Japan**24**(1972), 558–573. MR**306994**, DOI 10.2969/jmsj/02440558
E. B. Dynkin,

*Markov processes*. II, Fizmatgiz, Moscow, 1963; English transl., Die Grundlehren der math. Wissenschaften, Band 122, Academic Press, New York; Springer-Verlag, Berlin, 1965. MR

**33**# 1887.

## Bibliographic Information

- © Copyright 1973 American Mathematical Society
- Journal: Trans. Amer. Math. Soc.
**186**(1973), 259-272 - MSC: Primary 47H15
- DOI: https://doi.org/10.1090/S0002-9947-1973-0336482-1
- MathSciNet review: 0336482