THE MODULE DECOMPOSITION OF $l(\mathcal{A}/A)$

BY

KLAUS G. FISCHER

ABSTRACT. Let A and B be scalar rings with B an A-algebra. The B-algebra $D^n(B/A) = l(B/A) / I^n(B/A)$ is universal for n-truncated A-Taylor series on B. In this paper, we consider the A module decomposition of $D^n(\mathcal{A}/A)$ with a view to classifying the singularity A which is assumed to be the complete local ring of a point on an algebraic curve at a one-branch singularity. We assume that $A/M = k < A$ and that k is algebraically closed with no assumption on the characteristic.

We show that $D^n(\mathcal{A}/A) = l(\mathcal{A}/A)$ for n large and that the decomposition of $l(\mathcal{A}/A)$ as a module over the P.I.D. \mathcal{A} is completely determined by the multiplicity sequence of A. The decomposition is displayed and a length formula for $l(\mathcal{A}/A)$ developed.

1. Preliminaries. Suppose B and A are commutative rings with identity elements. Such rings are known as scalar rings. Suppose also that B is an A algebra.

Definition. An A linear map T from B to a B algebra S is called an S-valued A-Taylor series if, for each $x, y \in B$, $T(xy) = xT(y) + yT(x) + T(x)T(y)$ and if $T(1) = 0$.

Denote by π the map from $B \otimes_A B$ to B given by multiplication: i.e. $\pi(a \otimes_A b) = a \cdot b$. If $l(B/A)$ is defined by the exact sequence

$$0 \to l(B/A) \to B \otimes_A B \xrightarrow{\pi} B \to 0,$$

then the ideal $l(B/A)$ has the structure of a left B-algebra and a left B module (for $b \in B$ and $c \otimes_A d \in B \otimes_A B$, $b(c \otimes_A d) = (b \otimes_A 1)(c \otimes_A d)$). The B
module \(l(B/A) \) is generated by the set of elements \((1 \otimes_A x - x \otimes_A 1)\) for \(x \in B \). If \(z_i \ (i \in H) \) is a set of \(A \)-algebra generators for \(B \), then the elements
\[(1 \otimes_A z_i - z_i \otimes_A 1)\] are \(B \)-algebra generators for \(l(B/A) \) [6, p. 4].

Let \(\delta_A \) be the map from \(B \) to \(l(B/A) \) given by \(\delta_A(x) = 1 \otimes_A x - x \otimes_A 1 \). This map is easily checked to be an \(l(B/A) \)-valued \(A \)-Taylor series and is called the canonical \(A \)-Taylor series on \(B \). It is known that the pair \((\delta_A, l(B/A))\) is universal for \(S \)-valued \(A \)-Taylor series [6, p. 5]. Hence, if \(r: B \to S \) is an \(S \)-valued \(A \)-Taylor series, then there exists a unique \(B \)-algebra homomorphism \(r^* \) from \(l(B/A) \) to \(S \) so that \(r^* \delta_A = r \).

Definition. Suppose \(A \) and \(B \) are scalar rings with \(B \) an \(A \)-algebra. If \(S \) is a \(B \)-algebra then \(S \) is said to be \(n \)-truncated if for each sequence of \(n + 1 \) elements \(s_0, \ldots, s_n \) in \(S \), \(s_0 \cdots s_1 \cdots s_n = 0 \).

Definition. An \(S \)-valued \(A \)-Taylor series \(r \) is said to be \(n \)-truncated if \(S \) is \(n \)-truncated.

Denote by \(\theta \) the natural map of \(l(B/A) \) to \(l(B/A)/l(B/A)^{n+1} \). If \(\delta_A \) is the canonical \(A \)-Taylor series on \(B \), then \(\delta_A^n = \theta \delta_A \) is an \(n \)-truncated \(A \)-Taylor series and the pair \((\delta_A^n, l(B/A)/l(B/A)^{n+1})\) is universal for \(n \)-truncated \(S \)-valued \(A \)-Taylor series [6, p. 17].

The universal object \(l(B/A)/l(B/A)^{n+1} \) will be denoted by \(D^n(B/A) \) and has again the structure of a left \(B \)-algebra and hence \(B \)-module.

Lemma 1.1. Suppose \(A \) and \(B \) are scalar rings and \(B \) is a finitely generated \(A \)-module. Then \(l(B/A) \) is finitely generated as a \(B \)-module.

Proof. Let \(l(B/A) \) be defined by the sequence
\[0 \to l(B/A) \to B \otimes_A B \xrightarrow{\pi} B \to 0\]
where \(\pi(a \otimes_A b) = ab \). If \(\sum_{i=1}^n (a_i \otimes b_i) \in l(B/A) \), then \(\sum_{i=1}^n a_i b_i = 0 \) and consequently
\[n \sum_{i=1}^n (a_i \otimes b_i) = \sum_{i=1}^n (a_i \otimes 1)(1 \otimes b_i - b_i \otimes 1) \].

Hence, \(l(B/A) \) is generated as a \(B \)-module by elements of the form \((1 \otimes_A b - b \otimes_A 1) = \delta_A(b)\) where \(b \in B \). But \(B \) finitely generated as an \(A \)-module implies \(b = \sum x_i y_i \) where \(x_i \in A \) and \(y_i \) are the generators. Since \(\delta_A \) is \(A \)-linear, \(\delta_A(b) = \sum x_i \delta(y_i) \) and hence \(l(B/A) \) is finitely generated as a \(B \)-module. Q.E.D.

Let \(A \) be a Noetherian local domain and \(F \) its field of quotients. If \(\overline{A} \) is the integral closure of \(A \) in \(F \), assume that \(\overline{A} \) is finitely generated as an \(A \)-module. Lemma 1.1 then implies that \(l(\overline{A}/A) \) is finitely generated as an \(\overline{A} \)-module and, consequently, also \(D^n(\overline{A}/A) \).

Theorem 1.2. Assume that \(A \) is a local Noetherian domain of Krull dimension 1. If \(M \) is the maximal ideal of \(A \), assume \(A/M = k \) is algebraically closed and
k < A. Let \overline{A} be the integral closure of A inside its field of quotients and suppose \overline{A} is finitely generated as an A-module. If \overline{A} is local then the ideal $I(\overline{A}/A)$ is nilpotent.

Proof. Since \overline{A} is finitely generated over A, the conductor $C = \text{Ann}_A(\overline{A}/A) \neq 0$. (Take the product of the denominators of the generators of A.) We may assume that $C \neq (1)$, since otherwise $A = \overline{A}$.

Let x_1, \ldots, x_s be the generators for \overline{A} over A. Then $\delta_A(x_1), \ldots, \delta_A(x_s)$ are \overline{A} algebra generators for $I(\overline{A}/A)$. For the maximal ideal M' of \overline{A}, $\overline{A}/M' \cong k$ since k is algebraically closed. If $a + y \in \overline{A}$ where $a \in k$, then $\delta_A(a + y) = \delta_A(y)$.

Hence, we may assume that the x_i's lie in M'. Because A is one dimensional, we may assume that $x_i^d \in C < A$ for some d and all i. But

$$\delta_A(x_i^d) = \left(\begin{array}{c} d \\ 1 \end{array}\right)x_i^{d-1}\delta_A(x_i) + \left(\begin{array}{c} d \\ 2 \end{array}\right)x_i^{d-2}[\delta_A(x_i)]^2 + \cdots + [\delta_A(x_i)]^d$$

[6, p. 16]. Since $x_i^d \in A$, $\delta_A(x_i^d) = 0$ and hence

$$[\delta_A(x_i)]^d = (-1)^{d-1}d! x_i^{d-2}\delta_A(x_i) + \cdots + \left(\begin{array}{c} d \\ d-1 \end{array}\right)[\delta_A(x_i)]^{d-1}.$$

Since $(x_i)^d I(\overline{A}/A) = 0$, we conclude that $\delta_A(x_i)$ is nilpotent for $i = 1, \ldots, s$. But these are algebra generators for $I(\overline{A}/A)$ over \overline{A}. Therefore, $I(\overline{A}/A)$ is nilpotent. Q.E.D.

Theorem states that with the assumptions on A, $D^n(\overline{A}/A) \cong I(\overline{A}/A)$ as \overline{A}-algebras for $n > 0$. Specifically, if A is the complete local ring of a point on algebraic curve at a "one-branch singularity", then $D^n(\overline{A}/A) \cong I(\overline{A}/A)$ for n large and it is this observation which leads to the study of $I(\overline{A}/A)$ in the following sections.

Definition. Suppose A and B are scalar rings with B an A-algebra. Suppose M is a B-module. An A-linear map L from B to M is called a qth order derivation of B/A into M if it satisfies the following conditions:

1. $L(x_0 x_1 \ldots x_q) = \sum_{s=1}^{q} (-1)^{s-1} \sum_{i_1 < \ldots < i_s} x_{i_1} \ldots x_{i_s} L(x_0 \ldots \hat{x}_{i_1} \ldots \hat{x}_{i_s} \ldots x_q)$

for any set x_0, \ldots, x_q of $(q + 1)$ elements in B.

2. $L(1) = 0$.

Note that a derivation of order 1 is a standard derivation from B to M over A.

The map δ_A^q is itself a qth order derivation of B/A into $D^q(B/A)$. If L is a qth order derivation of B/A into M, then there exists a unique B-homomorphism b from $D^q(B/A)$ to M so that $b \cdot \delta_A^q = L$ [6, p. 35]. Therefore, when considered as a B-module, $D^q(B/A)$ together with δ_A^q is universal for qth order derivations of B/A into M (cf. [8]).
2. The blow-up and strict closure of A. Throughout this section we will assume that A is the complete local ring of a point on an algebraic curve at a "one-branch singularity" whose residue field k is algebraically closed and contained in A. Hence, A is a complete local Noetherian domain whose integral closure \overline{A} inside its quotient field F is a power series ring in one variable with coefficients in k. If $k[[t]]$ is the power series ring where t is a uniformizing parameter, then $A \subset k[[t]]$ and the inclusion is proper since we assume that A is the local ring of a singular point.

Since A is a complete local integral domain, \overline{A} is a finitely generated A module [7, p. 112]. Hence, $l(\overline{A}/A)$ is nilpotent according to Theorem 1.1.

The natural valuation on F will be denoted by v and for any $x \in A$, $v(x)$ is called the order of x. The valuation ring of v is, of course, $k[[t]]$.

Let E be a set contained in A. Then E is said to be open in the M-adic topology of A if $M^n < E$ for some n. Note that for any $x \in A$, x is not a zero divisor. Hence, since A is one-dimensional, xA is an open ideal. Let E be any A module and denote $\lambda_A(E)$ as the length of this module. For any open ideal $J < A$, $\lambda_A(A/J^n)$ becomes a polynomial of degree 1 in n for n large [11, Volume 1, p. 284]. This polynomial, say $en + b$, is known as the characteristic polynomial of J and e is called the multiplicity of the ideal J. We shall denote the multiplicity of an ideal $J < A$ as $e(J)$. The multiplicity of the maximal ideal M is by definition the multiplicity of A. We shall write $e(A)$ for $e(M)$. It is easy to see that $\lambda_A(M^n/M^{n+1}) = e(A)$ for n large. If $v(M)$ is the least integer in the set $\{v(x): x \in M\}$, then v is the valuation, then $v(M) = e(M)$.

Definition. Let M be the maximal ideal of A. Then $x \in M$ is said to be transversal to M if $v(x) = e(M)$.

Let $A < A = k[[t]]$ and let $e(A) = e > 0$. For any $x \in A$ where $v(x) = e$, $x = t^e u$ where u is a unit in $k[[t]]$. Hensel's lemma [11, Volume 2, p. 279] assures that there exists a unit $u' \in k[[t]]$ so that $(u')^e = u$. Setting $t' = tu'$, t' is necessarily of order one and $(t')^e = x$. Since $v(t') = 1$, $k[[t]] = k[[t']]) = \overline{A}$ and consequently, $F = k((t'))$. Hence, we may always assume that if x is transversal to $M < A$, then $x = t^e$ where $\overline{A} = k[[t]]$ and $e = e(A)$.

Let n be any positive integer. The power series ring $k[[t^n]]$ is contained in $k[[t]]$ and $k[[t]]$ is freely generated over $k[[t^n]]$ by the elements $1, t, \ldots, t^{n-1}$. Denote by R the power series ring $k[[t^n]]$ and let $\overline{A} = k[[t]]$.

Lemma 2.1. The \overline{A} module $l(\overline{A}/R)$ is a free \overline{A}-module on the generators $\delta_R(t), \ldots, \delta_R(t^{n-1})$.

Proof. The sequence

$$0 \to l(\overline{A}/R) \to \overline{A} \otimes_R \overline{A} \twoheadrightarrow \overline{A} \to 0$$

is split exact and hence $\overline{A} \otimes_R \overline{A} \cong \overline{A} \otimes l(\overline{A}/R)$. But $\overline{A} \otimes_R \overline{A}$ is a free \overline{A}-module.
THE MODULE DECOMPOSITION OF \mathcal{A} / A \hfill 117

of rank n and hence, $l(\mathcal{A} / R)$ is a free \mathcal{A}-module of rank $n - 1$. Since by Lemma 1.1, $\delta_R(t), \ldots, \delta_R(t^{n-1})$ generate $l(\mathcal{A} / R)$, they must form a free basis. \hfill Q.E.D.

Definition. Let x be transversal to M, the maximal ideal of A and let $\{x_1, \ldots, x_n\}$ generate M. The ring $A^M = A[x_1/x, \ldots, x_n/x]$ is called the blow-up of A along M [5, p. 651], (cf. [9]).

Note that A^M is finitely generated over A and that $\overline{A^M} = \mathbb{k}[[t]]$. Hence, $\overline{A^M}$ is itself the complete local ring of an algebraic curve at a one-branch singularity. Since M is contained in the maximal ideal of A^M, $e(A^M) \leq e(A)$.

Set $A^M = A_1$ and let M_1 be the maximal ideal of this ring. We may form the blow up of A_1 along the maximal ideal M_1 and set $A_1^M = A_2$ with maximal ideal M_2. Continuing in this way, we have a sequence of increasing rings

$A < A_1 < \ldots < A_N < \ldots < \mathcal{A}$.

Since A is Noetherian and for each i, A_i is finitely generated, $A_N = A_{N+1}$ for some N. Hence, by [9, p. 372], A_N is a regular local ring and therefore, $A_N = \mathcal{A} = \mathbb{k}[[t]]$. That is, the singularity can be resolved after applying a finite number of blow-ups. The sequence $A = A_0 < A_1 < \ldots < A_N < \ldots < \mathcal{A}$ is known as the branch sequence of A along the maximal ideal M of \mathcal{A} and $\{e(A), e(A_1), \ldots\}$ is called the multiplicity sequence of A.

Definition. Suppose \mathcal{A} is the integral closure of A inside its quotient field. Then the ring $A' = \{x \in \mathcal{A} : 1 \otimes_A x = x \otimes_A 1 = 1 \}$ is called the strict closure of A inside \mathcal{A}. Clearly, $A < A'$ and $\mathcal{A} = \mathcal{A}$. \hfill \textit{Lemma 2.2.} Let $A < A$ and let A' be the strict closure of A in \mathcal{A}. Then $\mathcal{A} \otimes_A \mathcal{A} \simeq \mathcal{A} \otimes_{A'} \mathcal{A}$, $l(\mathcal{A} / A) \simeq l(\mathcal{A} / A')$ and $D^n(\mathcal{A} / A) \simeq D^n(\mathcal{A} / A')$.

\textbf{Proof.} Consider the diagram

\[0 \rightarrow l(\mathcal{A} / A') \overset{i'}{\rightarrow} \mathcal{A} \otimes_{A'} \mathcal{A} \rightarrow 0 \]

\[0 \rightarrow l(\mathcal{A} / A) \overset{j}{\rightarrow} \mathcal{A} \otimes_A \mathcal{A} \rightarrow 0 \]

\[\psi/l(\mathcal{A} / A) \]

\[\psi/l(\mathcal{A} / A') \]

where ψ is the canonical map.

Note that for any three scalar rings $A < B < C$, the kernel of the canonical map from $C \otimes_A C$ to $C \otimes_B C$ is generated as an ideal by the elements $1 \otimes_A x - x \otimes_A 1 : x \in B$ [6, p. 12]. Hence, if K is the kernel of ψ, then K is generated as an ideal by the elements $1 \otimes_A x - x \otimes_A 1$ where $x \in A'$. Therefore $K = 0$. The map ψ is clearly onto and the restriction of ψ to $l(B / A)$ gives the required B-algebra isomorphism. Hence, $l(B / A) \simeq l(B / A')$ and $D^n(B / A) \simeq D^n(B / A')$. \hfill Q.E.D.

Remark 2.3. The proof of the lemma shows that $(A')' = A'$. If $A = A'$, then A is said to be strictly closed in \mathcal{A}. Under our standing assumption that $k < A$ (k
a field), [5, p. 677] shows that A' coincides with the Arf closure of A. In particular, $e(A) = e(A')$ [5, p. 668] and if M' is the maximal ideal of A', then $(A')^M = (A^M)'$ [5, p. 668]. The geometric properties of the strict closure of A (= Arf closure of A) will be used in § 4.

Remark 2.4. The blow-up of A' along its maximal ideal has an easier form. In fact, if A is strictly closed (i.e. $A = A'$) with maximal ideal M and if x is transversal to M, then $A^M = \{m/x : m \in M\}$. To show this we need only prove that Mx^{-1} forms a ring. But for any $y/x, z/x \in Mx^{-1}$,

$$y \cdot z/x \otimes_A 1 = y/x \otimes_A z = y/x \otimes_A zx/x = y \otimes_A z/x = 1 \otimes_A yz/x.$$

Hence, $y \cdot z/x \in A$ since A is strictly closed. Equivalently, $y \cdot z = x \cdot a, a \in M < A$. Therefore, $y/x \cdot z/x = a/x \in Mx^{-1}$.

3. The relation of $I(\overline{A}/A)$ to $I(\overline{A}/A^M)$. Suppose A is as in § 2 with maximal ideal M. Choose a transversal element x so that $x = t^e$ where $e = e(A)$ and $\overline{A} = k[[t]]$. Hence, A is properly contained in $\overline{A} = k[[t]]$ and if A^M is the blow-up of A along M, then also $\overline{A}^M = k[[t]]$. Let θ be the canonical homomorphism from $I(\overline{A}/A)$ to $I(\overline{A}/A^M)$ given by

$$\theta \left(\sum_{i=1}^{n} (a_i \otimes_A b_i) \right) = \sum_{i=1}^{n} (a_i \otimes_{A^M} b_i).$$

Note that θ is onto.

Let $R = k[[t^e]]$; it is clear that R is a complete subring of both A and A^M.

Lemma 2.1 asserts that $I(\overline{A}/R)$ is a free $\overline{A} = k[[t]]$ module with $\delta_R(t), \ldots, \delta_R(t^{e-1})$ as generators. Let ϕ_1 and ϕ_2 be the canonical maps from $I(\overline{A}/R)$ to $I(\overline{A}/A)$ and $I(\overline{A}/A^M)$, respectively. Since $I(\overline{A}/A)$ is generated by $\delta_A(t), \ldots, \delta_A(t^{e-1})$ (Lemma 1.1) and since $e(A^M) \leq e(A)$, it follows that ϕ_1 and ϕ_2 are both onto maps. Let $N(A)$ and $N(A^M)$ be the kernel of ϕ_1 and ϕ_2 respectively. We have then the diagram:

\[
\begin{array}{ccc}
N(A) & \xrightarrow{i_1} & I(\overline{A}/A) \\
\phi_2 & & \theta \\
N(A^M) & \xrightarrow{i_2} & I(\overline{A}/A^M)
\end{array}
\]

\[
(\ast)
\]

where clearly, $\phi_1 \theta = \phi_2$.

Both $N(A)$ and $N(A^M)$ are submodules of the free \overline{A} module $I(\overline{A}/R)$ and are finitely generated.
Lemma 3.1. With the situation as above, suppose $\eta \in N(A^M)$, then $t^e\eta \in N(A)$.

Proof. If A' is the strict closure of A in \overline{A}, then $l(\overline{A}/A) \cong l(\overline{A}/A')$ where the \overline{A}-algebra isomorphism is given by the canonical morphism ψ_1 from $\overline{A} \otimes_A \overline{A}$ to $\overline{A} \otimes_A \overline{A}$.

Let M' be the maximal ideal of A'. Since the blow-up of A commutes with taking the strict closure (Remark 2.3), we have $(A')^{M'} = (A^M)'$ and hence the commutative diagram:

$$
\begin{array}{ccc}
I(\overline{A}/AM^M) & \xrightarrow{\psi_2} & I(\overline{A}/(AM')^M) \\
\downarrow{\theta} & & \downarrow{\theta'} \\
I(\overline{A}/A) & \xrightarrow{\psi_1} & I(\overline{A}/A')
\end{array}
$$

where ψ_2 and θ' are the obvious canonical maps.

If $\eta = \sum_{j=1}^{e-1} a_j \delta_R(t^j) \in N(A^M)$, then

$$
\psi_2 \phi_2(\eta) = \sum_{j=1}^{e-1} a_j \delta_{A^M}(t^j) = 0.
$$

Since $\epsilon(A) = \epsilon(A')$ (Remark 2.3), t^e is also transversal to M' and since $(A')^{M'} = (A^M)'$, $A'^{M'}$ is strictly closed and $(A')^{M'} = \{m'/t^e : m' \in M'\}$ (Remark 2.4). But

$$
\sum_{j=1}^{e-1} a_j \delta_{A^M}(t^j) = \sum_{j=1}^{e-1} a_j \delta_{(A')^{M'}}(t^j) = 0
$$

and hence

$$
\sum_{j=1}^{e-1} c_i \otimes_A d_i \left(1 \otimes_A \frac{m_i'}{t^e} - \frac{m_i'}{t^e} \otimes_A 1\right)
$$

where $m_i' \in M'$ for all i and $c_i, d_i \in \overline{A}$. Then clearly

$$
(t^e) \left(\sum_{j=1}^{e-1} a_j \delta_{A^M}(t^j)\right) = 0.
$$

Since ψ_1 is an isomorphism it follows that $t^e \sum_{j=1}^{e-1} a_j \delta_A(t^j) = 0$ and consequently, $\phi_1[t^e(\sum_{j=1}^{e-1} a_j \delta_R(t^j))] = 0$. Hence, $t^e\eta \in N(A)$. Q.E.D.

Let $\eta_1, \ldots, \eta_s \in N(A^M)$ be a set of generators for $N(A^M)$. (This generating set is finite since the rank of $l(\overline{A}/R)$ is finite.) The next theorem asserts that $t^e\eta_1, \ldots, t^e\eta_s$ is then a generating set for $N(A)$. In fact, let η_1, \ldots, η_s form a basis for $N(A^M)$. That is, if $\sum_{i=1}^{s} a_i \eta_i = 0$ where $a_i \in \overline{A}$, then necessarily $a_i \eta_i = 0$ for all i. We may then claim that $t^e\eta_1, \ldots, t^e\eta_s$ is a basis for $N(A^M)$.

Theorem 3.2. Suppose $\eta_1, \ldots, \eta_s \in N(A^M)$ form a basis for $N(A^M)$. Then the
elements $t^e \eta_1, \ldots, t^e \eta_s$ form a basis for $N(A)$.

Proof. Lemma 3.1 assures that $t^e \eta_1, \ldots, t^e \eta_s \in N(A)$. In order to show that these elements generate $N(A)$, we refer to diagram (*).

If $\xi = \sum_{j=1}^{e-1} a_j \delta_R(t^j) \in N(A)$, then

$$\phi_1(\xi) = \sum_{j=1}^{e-1} a_j \delta_A(t^j) = 0 \quad \text{in } k[[t]] \otimes_A k[[t]].$$

Hence,

$$\xi = \sum_{i=1}^n (a_i \otimes_R b_i) (1 \otimes_R t^i - t^i \otimes_R 1)$$

where $a_i, b_i \in \overline{A}$ and $x_i \in M < A$. Since $t^e \in R = k[[t]]$,

$$\xi = t^e \left(\sum_{i=1}^n (a_i \otimes_R b_i) \left(1 \otimes_R \frac{x_i}{t^e} - \frac{x_i}{t^e} \otimes_R 1 \right) \right).$$

Now,

$$\phi_2 \left(\sum_{i=1}^n (a_i \otimes_R b_i) \left(1 \otimes_R \frac{x_i}{t^e} - \frac{x_i}{t^e} \otimes_R 1 \right) \right) = \theta \cdot \phi_1 \left(\sum_{i=1}^n (a_i \otimes_R b_i) \left(1 \otimes_R \frac{x_i}{t^e} - \frac{x_i}{t^e} \otimes_R 1 \right) \right) = 0$$

since $x_i / t^e \in A^M$. Therefore,

$$\sum_{i=1}^n (a_i \otimes_R b_i) \left(1 \otimes_R \frac{x_i}{t^e} - \frac{x_i}{t^e} \otimes_R 1 \right) = \sum_{i=1}^s \beta_i \eta_i$$

where $\beta_i \in k[[t]]$ for $i = 1, \ldots, s$. Hence,

$$\xi = t^e \left(\sum_{i=1}^s \beta_i \eta_i \right) = \sum_{i=1}^s \beta_i t^e \eta_i$$

and, consequently, $t^e \eta_1, \ldots, t^e \eta_s$ generate $N(A)$.

To show that $t^e \eta_1, \ldots, t^e \eta_s$ form a basis we need only point out that the \overline{A}-module homomorphism p from the free \overline{A} module $l(\overline{A}/R)$ to $l(\overline{A}/R)$ given by

$$p \left(\sum_{j=1}^{e-1} a_j \delta_R(t^j) \right) = \sum_{j=1}^{e-1} t^e a_j \delta_R(t^j)$$

is injective. Q.E.D.

It should be noted that in the case where A^M is the full power series ring $k[[t]]$, then a set of generators for $N(A)$ is $\{t^e \delta_A(t), \ldots, t^e \delta_A(t^{e-1})\}$ where $e = \ldots$
When A is itself equal to $k[[t]]$, then $l(\bar{A}/A) = l(\bar{A}/AM) = 0$ and the theorem is trivial.

Corollary 3.3. If $z = \sum_{j=1}^{e-1} a_j \delta_A(t^j) = 0$ in $\bar{A} \otimes_A \bar{A}$ where $e = e(A) > 1$, then $v(a_j) \geq e$ for all j. Consequently, $a_j / t^e = a_j \in k[[t]]$. Furthermore,

$$e-1 \sum_{j=1} \alpha_j \delta_{AM}(t^j) = 0 \quad \text{in} \quad \bar{A} \otimes_{AM} \bar{A}.$$

Proof. Let $\sum_{j=1}^{e-1} a_j \delta_R(t^j)$ be the preimage of z under ϕ_1. The theorem asserts that

$$e-1 \sum_{j=1} a_j \delta_R(t^j) = t^e \left(\sum_{j=1}^{e-1} a_j \delta_R(t^j) \right)$$

for some $a_j \in k[[t]]$. But $l(\bar{A}/R)$ is a free module and hence, $a_j = t^e a_j$ for all j. Consequently, $v(a_j) = e + v(a_j) \geq e$ since $a_j \in k[[t]]$.

Since $z = 0$ in $\bar{A} \otimes_A \bar{A}$ and because $e \in R = k[[t^e]]$ we have

$$e-1 \sum_{j=1} a_j \delta_R(t^j) = \sum_{i=1}^n (c_i \otimes_R d_i)(1 \otimes_R y_i - y_i \otimes_R 1)$$

$$= t^e \left[\sum_{i=1}^n (c_i \otimes_R d_i) \left(1 \otimes_R \frac{y_i}{t^e} - \frac{y_i}{t^e} \otimes_R 1 \right) \right],$$

where $c_i, d_i \in \bar{A}$ and $y_i \in A$.

But $a_j = t^e a_j$, and hence

$$(t^e) \left[\sum_{j=1}^{e-1} a_j \delta_R(t^j) \right] = (t^e) \left[\sum_{i=1}^n (c_i \otimes_R d_i) \left(1 \otimes_R \frac{y_i}{t^e} - \frac{y_i}{t^e} \otimes_R 1 \right) \right].$$

But $l(\bar{A}/R)$ is a free module (Lemma 2.1) and therefore,

$$e-1 \sum_{j=1} a_j \delta_R(t^j) = \sum_{i=1}^n (c_i \otimes_R d_i) \left(1 \otimes_R \frac{y_i}{t^e} - \frac{y_i}{t^e} \otimes_R 1 \right).$$

Under the mapping ϕ_2, the right side of this equation goes to zero since $y_i / t^e \in A^M$ and hence,

$$e-1 \sum_{j=1} a_j \delta_{AM}(t^j) = 0 \quad \text{in} \quad \bar{A} \otimes_{AM} \bar{A}. \quad \text{Q.E.D.}$$

We refer once more to diagram (*). Since $l(\bar{A}/R)$ is a free module over the principal ideal domain $k[[t]] = \bar{A}$, $N(A) = \ker \phi_1$ is itself free and finitely generated.

Let $\eta_i \in N(A)$, $i = 1, \ldots, s$ be a basis for $N(A)$. If $\eta_i = \sum_{j=1}^{e-1} \alpha_{ij} \delta_R(t^j)$ for each i, let (α_{ij}) be the matrix of the coefficients. It is known that a set of in-
variant factors of \((a_{ij})\) are found by considering the highest common factor of all \((k \times k)\) subdeterminants of \((a_{ij})\) [4, p. 92]. These invariant factors completely determine the structure of the \(k[[t]]\) module \(l(\overline{A}/A)\) and are unique up to units from \(k[[t]]\).

Likewise, let \((\beta_{ij})\) be the matrix of the coefficients of a basis for \(N(A^M) = \ker \phi_2\). We shall relate the invariant factors of \((a_{ij})\) to those of \((\beta_{ij})\).

Lemma 3.4. Suppose \(e\) is the multiplicity of \(A\) and \(A^M\) is the blow-up of \(A\). Let \(\{E_1, \ldots, E_{e-1}\}, E_i \in k[[t]]\) be a set of invariant factors of \((\beta_{ij})\). Then \(\{t^eE_1, \ldots, t^eE_{e-1}\}\) constitutes a set of invariant factors of \((a_{ij})\).

Conversely, suppose \(\{F_1, \ldots, F_{e-1}\}\) is a set of invariant factors of \((a_{ij})\) then \(F_i/t^e \in k[[t]]\) for all \(i = 1, \ldots, e-1\) and \(\{F_1/t^e, \ldots, F_{e-1}/t^e\}\) is a set of invariant factors of \((\beta_{ij})\).

Proof. Let \((\beta_{ij})\) be the matrix of the relations for \(N(A^M)\). Theorem 3.2 implies that \((t^e\beta_{ij})\) is the matrix of the relations of \(N(A)\). Let \(\sigma_1, \ldots, \sigma_e\) be the highest common factor of the \((k \times k)\) subdeterminants of \((\beta_{ij})\). We have [4, p. 92]

\[
\sigma_1 = E_1, \quad \sigma_2/\sigma_1 = E_2, \quad \ldots, \quad \sigma_{e-1}/\sigma_{e-2} = E_{e-1}.
\]

Hence,

\[
t^e\sigma_1 = t^eE_1, \quad \frac{(t^e)^2\sigma_2}{(t^e)\sigma_1} = t^eE_2, \quad \ldots, \quad \frac{(t^e)^{e-1}\sigma_{e-1}}{(t^e)^{e-2}\sigma_{e-2}} = t^eE_{e-1}
\]

is a set of invariant factors of \((a_{ij})\).

Conversely, Theorem 3.2 asserts that \((t^e\beta_{ij})\) is the matrix of relations of \(N(A)\). Hence, \(t^eE_i\) and \(F_i\) are associates for each \(i\). The conclusion follows easily. Q.E.D.

Suppose \(A = A_0 < A_1 < \ldots < A_N < \ldots < \overline{A}\) is the branch sequence of \(A\) along \(M < A\), the maximal ideal of \(\overline{A}\). Let \(e_i = e(A_i)\) for each \(i\). Assume that \(A_{N+1} = k[[t]]\) and \(e(A_N) = e_N > 1\). Hence, the multiplicity sequence of \(A\) has the form \(\{e_0, e_1, \ldots, e_N, 1, \ldots\}\).

Theorem 3.5. The decomposition of \(l(\overline{A}/A)\) as a module over the P.I.D. \(\overline{A}\) depends only on the multiplicity sequence of \(A\).

Proof. If \((a_{ij})\) is the matrix of relations for \(N(A_i)\) and \(\{F_1, \ldots, F_{e_i-1}\}\) constitutes a set of invariant factors of \((a_{ij})\) then \(l(\overline{A}/A_i) \cong \overline{A}/F_1 \oplus \ldots \oplus \overline{A}/F_{e_i-1}\) \[4, p. 86\], as \(\overline{A}\) modules. We shall write \(l(\overline{A}/A_i) \sim \{F_1, \ldots, F_{e_i-1}\}\) to mean that \(\{F_1, \ldots, F_{e_i-1}\}\) is a set of invariant factors of \((a_{ij})\). Since \(A_{N+1} = k[[t]]\), we may proceed backwards to \(A\) by using Lemma 3.4. In fact, if \(\{e_0, \ldots, e_N, 1, \ldots\}\) is the multiplicity sequence of \(A\), write \(E_i = t^{e_i}\) for \(i = 0, \ldots, N\). Then using Lemma 3.4 repeatedly:
THE MODULE DECOMPOSITION OF $l(\overline{A}/A)$

\[l(\overline{A}/A_N) \sim \{E_N, \ldots, E_N\} \]
\[e_N - 1 \]

\[l(\overline{A}/A_{N-1}) \sim \{E_{N-1}, \ldots, E_{N-1}\} \]
\[E_N \cdot E_{N-1}, \ldots, E_N \cdot E_{N-1} \]
\[e_{N-1} - e_N \geq 0 \]
\[e_N - 1 \]

\[l(\overline{A}/A_{N-2}) \sim \{E_{N-2}, \ldots, E_{N-2}\} \]
\[E_{N-1} \cdot E_{N-2}, \ldots, E_{N-1} \cdot E_{N-2} \]
\[e_{N-1} - e_{N-1} \]
\[e_N - 1 \]

\[\frac{E_N \cdot E_{N-1} \cdot E_{N-2}, \ldots, E_N \cdot E_{N-1} \cdot E_{N-2}}{e_N - 1} \]

Note that it may happen that $e_{i+1} - e_i = 0$. Q.E.D.

Theorem 3.6. Let \{e_0, e_1, \ldots, e_N, 1, \ldots\} be the multiplicity sequence of A.

Then

\[\lambda^{-1}_A(l(\overline{A}/A)) = \sum_{i=0}^{\infty} e_i(e_i - 1). \]

Proof. If $l(\overline{A}/A) \sim \{F_1, \ldots, F_r\}$, then it is clear that $\lambda^{-1}_A(l(\overline{A}/A)) = v(F_1) + \ldots + v(F_r)$ where v is the valuation. Hence, by Theorem 3.5

\[\lambda^{-1}_A(l(\overline{A}/A)) = (e_0 - e_1)v(E_0) + (e_1 - e_2)[v(E_0) + v(E_1)] \]
\[+ \ldots + (e_{N-1})[v(E_0) + \ldots + v(E_N)] \]
\[= (e_0 - 1)v(E_0) + (e_1 - 1)v(E_1) + \ldots + (e_{N-1})v(E_N) \]
\[= \sum_{i=0}^{N} e_i(e_i - 1) \quad \text{since} \quad v(E_i) = e_i \text{ for all } i. \]
Since $e_{N+k} = 1$ for $k \geq 1$, the formula holds when taking the infinite sum. Q.E.D.

We mention that if A is the complete local ring of a plane curve with only one characteristic pair, i.e. if $A = k[[t^p, t^q + a_1 t^{q+1} + \cdots]]$ where $(p, q) = 1$, then the length formula reduces to the following: $\lambda_A(l(A/A)) = (p-1)(q-1)$.

4. Comparison of $l(A/A)$ to $l(B/B)$. The purpose of this section is to study the relationship of the $k[[t]]$ module $l(A/A)$ to that of $l(B/B)$ where A and B are two arbitrary rings which satisfy the previous assumption. Namely, A and B are the complete local rings of an algebraic curve at a "one-branch singularity." We shall assume that $\overline{A} = \overline{B} = k[[t]]$ for some uniformizing parameter t (a field algebraically closed). If C is any ring satisfying the above, we write l_C to mean $l(C/C)$ since $C = k[[t]]$ for all of these rings. We shall, for the most part, be interested in the structure of l_A as a module over $k[[t]]$ even though l_A is also an algebra over $k[[t]]$. We will mention explicitly which structure is intended.

Recall that every k automorphism σ on $k[[t]]$ is of the form $\sigma: t \rightarrow ut$ where u is a unit in $k[[t]]$. Conversely, every mapping of the form σ is a k-automorphism on $k[[t]]$.

Definition. If $A, B \leq k[[t]]$, both complete, A and B are said to be analytically equivalent if there exists a k-automorphism σ on $k[[t]]$ so that $\sigma(A) = B$.

Let $A = A_0 < A_1 < A_2 < \cdots < k[[t]]$ and $B = B_0 < B_1 < B_2 < \cdots < k[[t]]$ be the branch sequence of A and B respectively. Let $\{e(A_0) = e(A), e(A_1), \ldots\}$ and $\{e(B_0) = e(B), e(B_1), \ldots\}$ be the multiplicity sequence of A and B respectively.

Definition. A and B are said to have the same multiplicity sequence if $e(A_i) = e(B_i)$ for every $i = 0, 1, \ldots$.

Lemma 4.1. If A and B are analytically equivalent, then $l_A \cong l_B$ as $k[[t]]$ modules.

Proof. If M and M' are the maximal ideals of A and B respectively, then the k-automorphism σ of $k[[t]]$ between A and B extends to one between A^M and $B^{M'}$. Hence the multiplicity sequences of A and B are the same, since $\sigma(A) = B$ implies $e(A) = e(B)$. By Theorem 3-5, the decomposition of l_A as $k[[t]]$ modules is dependent only on the multiplicity sequence of A. Hence, the decomposition of l_A and l_B are equivalent. Q.E.D.

Lemma 4.2. Let \overline{M} be the maximal ideal of A, then

$$\dim_{A/\overline{M}}(l_A/\overline{M}l_A) = \dim_k(l_A/\overline{M}l_A) = e(A) - 1.$$

Proof. We may assume that a transversal element has been so chosen that
THE MODULE DECOMPOSITION OF \mathcal{A}/A

Let $x = t^e$ where $e = e(A)$ and $\mathcal{A} = k[[t]]$. Hence, $M = (t)$ and we need to show

$$\dim_k(S_A/(t)S_A) = e(A) - 1.$$

Lemma 2.1 says that $\delta_A(t), \ldots, \delta_A(t^{e-1})$ generate S_A as a $k[[t]]$ module. Hence, $\delta_A(t), \ldots, \delta_A(t^{e-1})$ span the k vector space $S_A/(t)S_A$. We need to show these are independent. But if $\sum_{j=1}^{e-1} \alpha_j \delta_A(t^j) = 0$ in $S_A/(t)S_A$ then $\sum_{j=1}^{e-1} \alpha_j \delta_A(t^j) \in (t)S_A$ or, equivalently, $\sum_{j=1}^{e-1} \alpha_j \delta_A(t^j) \in (t)S_A$ where $\alpha_j \in k$ is the constant term of the power series a_j. Hence $\sum_{j=1}^{e-1} (a_j - b_j) \delta_A(t^j) = 0$ where $b_j \in (t)$. But Corollary 2.3 implies $v(a_j - b_j) > e(A)$ for all j. Hence, $a_j = 0$ and $a_j = 0$ for all j. Q.E.D.

Lemma 4.3. If M and M^* are the maximal ideals of A and B respectively, then $S_A \otimes I_A \cong I_B$ implies $I_A = I_B$ (both isomorphisms as $k[[t]]$ isomorphisms.)

Proof. By Lemma 4.2, $S_A \otimes I_B$ implies $e(A) - 1 = e(B) - 1$ and hence $e(A) = e(B) = e$. Therefore, if t^e and $(t')^e$ are transversal parameters to M and M^* respectively, then $t^e = u(t')^e$ where u is a unit in $k[[t]]$.

Let E_1, \ldots, E_{e-1} and F_1, \ldots, F_{e-1} be a set of invariant factors of S_A and S_B respectively (cf. Lemma 3.4). We may assume E_i and F_i are associates and $E_i \neq 1$ for each i.

$\sum_{j=1}^{e-1} \alpha_j \delta_A(t^j) \in (t)S_A$ or, equivalently, $\sum_{j=1}^{e-1} \alpha_j \delta_A(t^j) \in (t)S_A$ where $\alpha_j \in k$ is the constant term of the power series a_j. Hence $\sum_{j=1}^{e-1} (a_j - b_j) \delta_A(t^j) = 0$ where $b_j \in (t)$. But Corollary 2.3 implies $v(a_j - b_j) > e(A)$ for all j. Hence, $a_j = 0$ and $a_j = 0$ for all j. Q.E.D.

The converse of this is clearly false. Let $A = k[[t^2, t^3]]$ and $B = k[[t^3, t^4]]$ with maximal ideal $M = (t^2, t^3)$ and $M^* = (t^3, t^4)$ respectively. Then $A^M = B^{M^*} = k[[t]]$ and hence, $I_A = I_B = 0$. But Theorem 3.5 gives

$$I_A \cong \mathcal{A}/(t^2) \text{ and } I_B \cong \mathcal{A}/t^3 \oplus \mathcal{A}/t^3$$

as $k[[t]]$ modules.

Theorem 4.4. $I_A \cong I_B$ as $k[[t]]$ modules if and only if A and B have the same multiplicity sequence.

Proof. Let $A = A_0 < A_1 < \ldots < A_N = k[[t]]$ and $B = B_0 < B_1 < \ldots < B_N = k[[t]]$ be the branch sequence of A and B respectively. Lemma 4.2 implies that if $I_A \cong I_B$, then $e(A) = e(B)$. Lemma 4.3 asserts that $I_A \cong I_B$ and hence $e(A_j) = e(B_j)$. Continuing, the result follows.

Theorem 3.5 asserts the converse. Q.E.D.

Before continuing, we need to indicate some of the geometric properties of the strict closure A' of A in \mathcal{A}. Let C be a ring so that $A < C < \mathcal{A} = k[[t]]$. (Our assumptions on A imply that C is necessarily local and complete.) Let $C = C_0
K. G. FISCHER

$C_1 < \cdots < C_N < \overline{A}$ be the branch sequence of C and let $e(C_i) = e_i$. The ring C is said to be an Arf ring (cf. [1]) if it satisfies any one of the following conditions.

1. The embedding dimension of C_i is equal to the multiplicity of C_i for every i.
2. $\lambda_C(C/C) = \sum_{i=0}^{\infty} (e_i - 1)$. (Since $e_n = 1$ for n large, the formula makes sense.)
3. The semigroup $G(C) = \{\sigma(x) : x \in C\}$ has the form $G(C) = \{0, e_0, e_0 + e_1, e_0 + e_1 + e_2, \ldots\}$.

J. Lipman in [5] shows the equivalence of the above conditions. In the same paper, he shows that if A is any ring among the collection of all Arf rings between A and \overline{A}, there exists one, say A^*, contained in all the others [5, p. 666]. The ring A^* is called the Arf closure of A and coincides with the strict closure A' since we assume that A contains a field k [5, p. 677]. Hence, we shall continue to denote the Arf closure A^* of A as A'.

Remark 4.5. Note that if $A < C < \overline{A}$, then $A' < C'$. Using (2), the ring A' (= strict closure of A = Arf closure of A) can be characterized as the largest ring between A and \overline{A} whose multiplicity sequence is equal to A [5, p. 671]. This implies that if $A < C < \overline{A}$, then $A' = C'$ if and only if the multiplicity sequence of A is equal to the multiplicity sequence of C. Similarly, one shows by using (3) that if $A < C < \overline{A}$, then $A' = C'$ if and only if $G(C') = G(A')$.

Definition. Let $d \in G(A)$ be the least integer in $G(A)$ so that $d + j \in G(A)$ for any integer $j \geq 0$. Then d is called the degree of the conductor of A.

Theorem 4.6. The annihilator ideal of I_A in $\overline{A} = k[[t]]$ is (t^d) where d is the degree of the conductor of A'.

Proof. By induction on the number of blow-ups needed to "resolve the singularity". Note that if $A = k[[t]]$, then $A' = k[[t]]$ and since $d = 0$ and $I_A = 0$, the theorem holds true in this case.

Next note that for an ideal $Q \leq k[[t]]$, $Q|_A = 0$ if and only if $Q\delta_A(t) = 0$. For if $x = \sum_{i=0}^{\infty} a_i t^i \in k[[t]]$, $\delta_A(x) = \sum_{i=1}^{\infty} a_i \delta(t^i)$. But

$$\delta_A(t^n) = \binom{n}{1} t^{n-1} \delta_A(t) + \binom{n}{2} t^{n-2} \delta_A^2(t) + \cdots + \delta^n(t)$$

and hence, $Q|_A = 0$ if $Q\delta_A(t) = 0$. The converse is clear. Therefore, the theorem asserts that the order ideal of $\delta_A(t)$ is (t^d) where d is the degree of the conductor of A'.

Let A have the multiplicity sequence $\{e(A), e(A_1), e(A_2), \ldots, e(A_N), 1, \ldots\}$ where N is the largest integer so that $e(A_N) > 1$. By Remark 4.5, $G(A') = \{0, e_0, e_0 + e_1, \ldots\}$ where $e_1 = e(A_1)$, and hence, the degree of the conductor of A' is $d = e_0 + e_1 + \cdots + e_N$. Note that A_1 has the multiplicity sequence $\{e_1,$
THE MODULE DECOMPOSITION OF $k\overline{A}/A$

Let A and B be complete local rings of points on an algebraic curve at one-branch singularities and assume that $A < B < \overline{A}$. Then the following are equivalent.

1. $I_A \cong I_B$ as $k[[t]] = \overline{A} = B$ modules.
2. The multiplicity sequence of A is equal to the multiplicity sequence of B.
3. $A' = B'$.
4. $A \cong B$ as \overline{A}-algebras.
5. $D^n(\overline{A}/A) \cong D^n(\overline{B}/B)$ as \overline{A}-algebras for all n.
6. $G(A') = G(B')$.

Proof. (1) implies (2) by Theorem 4.4, (2) implies (3) by Remark 4.5. To show that (3) implies (4), we consider the canonical isomorphism ψ from $\overline{A} \otimes_A \overline{A}$ to $\overline{A} \otimes_B \overline{A}$. (By assumption, $\overline{A} \otimes_A \overline{A} = \overline{A} \otimes_B \overline{A}$.) From the diagram:

$$
\begin{array}{ccc}
0 & \rightarrow & I_B \\
& \searrow & \downarrow \psi/I_A \\
& & \psi \\
0 & \rightarrow & I_A \\
\end{array}
\quad
\begin{array}{ccc}
\overline{A} & \otimes_B & \overline{A} \\
& \rightarrow & \overline{A} \\
\overline{A} & \otimes_A & \overline{A} \\
& \rightarrow & \overline{A} \\
& \rightarrow & 0 \\
\end{array}
$$

it is clear that the restriction of ψ gives the desired algebra isomorphism.

Clearly, (4) implies (1).

Since by Theorem 1.1, $D^n(\overline{A}/A) = I(\overline{A}/A)$ and $D^n(\overline{B}/B) = I(\overline{B}/B)$ for $n > 0$, (4) is equivalent to (5).

(6) is equivalent to (3) by Remark 4.5. Q.E.D.

REFERENCES

DEPARTMENT OF MATHEMATICS, NORTHWESTERN UNIVERSITY, EVANSTON, ILLINOIS 60201

Current address: Department of Mathematics, George Mason University, Fairfax, Virginia 22030