A Kurosh subgroup theorem for free pro-$\mathcal {C}$-products of pro-$\mathcal {C}$-groups
HTML articles powered by AMS MathViewer
- by Dion Gildenhuys and Luis Ribes
- Trans. Amer. Math. Soc. 186 (1973), 309-329
- DOI: https://doi.org/10.1090/S0002-9947-1973-0340433-3
- PDF | Request permission
Abstract:
Let $\mathcal {C}$ be a class of finite groups, closed under finite products, subgroups and homomorphic images. In this paper we define and study free pro-$\mathcal {C}$-products of pro-$\mathcal {C}$-groups indexed by a pointed topological space. Our main result is a structure theorem for open subgroups of such free products along the lines of the Kurosh subgroup theorem for abstract groups. As a consequence we obtain that open subgroups of free pro-$\mathcal {C}$-groups on a pointed topological space, are free pro-$\mathcal {C}$-groups on (compact, totally disconnected) pointed topological spaces.References
- E. Binz, J. Neukirch and G. H. Wenzel, Free pro-$\mathcal {C}$-products, Queen’s Mathematical preprint No. 1969-17.
- N. Bourbaki, Éléments de mathématique. Part I. Les structures fondamentales de l’analyse. Livre III. Topologie générale. Chapitres I et II, Actualités Scientifiques et Industrielles [Current Scientific and Industrial Topics], No. 858, Hermann & Cie, Paris, 1940 (French). MR 0004747
- Dion Gildenhuys and Chong Keang Lim, Free pro-$\scr C$-groups, Math. Z. 125 (1972), 233–254. MR 310071, DOI 10.1007/BF01111306
- K. W. Gruenberg, Residual properties of infinite soluble groups, Proc. London Math. Soc. (3) 7 (1957), 29–62. MR 87652, DOI 10.1112/plms/s3-7.1.29
- K. W. Gruenberg, Projective profinite groups, J. London Math. Soc. 42 (1967), 155–165. MR 209362, DOI 10.1112/jlms/s1-42.1.155
- Kenkichi Iwasawa, On solvable extensions of algebraic number fields, Ann. of Math. (2) 58 (1953), 548–572. MR 0059314, DOI 10.2307/1969754
- A. G. Kuroš, Lektsii po obshcheĭ algebre, Gosudarstv. Izdat. Fiz.-Mat. Lit., Moscow, 1962 (Russian). MR 0141700
- Alexander Kurosch, Die Untergruppen der freien Produkte von beliebigen Gruppen, Math. Ann. 109 (1934), no. 1, 647–660 (German). MR 1512914, DOI 10.1007/BF01449159
- Saunders Mac Lane, A proof of the subgroup theorem for free products, Mathematika 5 (1958), 13–19. MR 97442, DOI 10.1112/S0025579300001297 W. Magnus, A. Karrass and D. Solitar, Combinatorial group theory, Interscience, New York, 1966.
- Jürgen Neukirch, Freie Produkte pro-endlicher Gruppen und ihre Kohomologie, Arch. Math. (Basel) 22 (1971), 337–357 (German). MR 347992, DOI 10.1007/BF01222586
- Marshall Hall Jr., A topology for free groups and related groups, Ann. of Math. (2) 52 (1950), 127–139. MR 36767, DOI 10.2307/1969513
- Luis Ribes, Introduction to profinite groups and Galois cohomology, Queen’s Papers in Pure and Applied Mathematics, No. 24, Queen’s University, Kingston, Ont., 1970. MR 0260875
- Luis Ribes, On amalgamated products of profinite groups, Math. Z. 123 (1971), 357–364. MR 291295, DOI 10.1007/BF01109991
- Jean-Pierre Serre, Cohomologie galoisienne, Lecture Notes in Mathematics, No. 5, Springer-Verlag, Berlin-New York, 1965 (French). With a contribution by Jean-Louis Verdier; Troisième édition, 1965. MR 0201444
Bibliographic Information
- © Copyright 1973 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 186 (1973), 309-329
- MSC: Primary 20F20
- DOI: https://doi.org/10.1090/S0002-9947-1973-0340433-3
- MathSciNet review: 0340433