Critical point theory for nonlinear eigenvalue problems with indefinite principal part
HTML articles powered by AMS MathViewer
- by Melvyn S. Berger
- Trans. Amer. Math. Soc. 186 (1973), 151-169
- DOI: https://doi.org/10.1090/S0002-9947-1973-0341210-X
- PDF | Request permission
Abstract:
A study of the nontrivial solutions of the operator equation $Lu = \lambda \Pi ’(u)$ is made, where L is a selfadjoint Fredholm operator mapping a Hilbett space H into itself, and $\Pi (u)$ is a $C’$ weakly sequentially continuous real valued functional defined on H. Applications are given to the theory of semilinear elliptic boundary value problems and periodic solutions of Hamiltonian systems.References
- Melvyn S. Berger, Periodic solutions of second order dynamical systems and isoperimetric variational problems, Amer. J. Math. 93 (1971), 1–10. MR 276848, DOI 10.2307/2373443
- Melvyn S. Berger, An eigenvalue problem for nonlinear elliptic partial differential equations, Trans. Amer. Math. Soc. 120 (1965), 145–184. MR 181821, DOI 10.1090/S0002-9947-1965-0181821-3
- R. Tyrrell Rockafellar, Convex analysis, Princeton Mathematical Series, No. 28, Princeton University Press, Princeton, N.J., 1970. MR 0274683
- M. A. Krasnosel’skii, Topological methods in the theory of nonlinear integral equations, A Pergamon Press Book, The Macmillan Company, New York, 1964. Translated by A. H. Armstrong; translation edited by J. Burlak. MR 0159197
- Martin Schechter, Principles of functional analysis, Academic Press, New York-London, 1971. MR 0445263
- Henri Poincaré, Sur les lignes géodésiques des surfaces convexes, Trans. Amer. Math. Soc. 6 (1905), no. 3, 237–274 (French). MR 1500710, DOI 10.1090/S0002-9947-1905-1500710-4
- S. I. Pohožaev, The set of critical values of functionals, Mat. Sb. (N.S.) 75 (117) (1968), 106–111 (Russian). MR 0221534
- Marston Morse, The calculus of variations in the large, American Mathematical Society Colloquium Publications, vol. 18, American Mathematical Society, Providence, RI, 1996. Reprint of the 1932 original. MR 1451874, DOI 10.1090/coll/018
- Melvyn S. Berger, Bifurcation theory and the type numbers of Marston Morse, Proc. Nat. Acad. Sci. U.S.A. 69 (1972), 1737–1738. MR 298485, DOI 10.1073/pnas.69.7.1737
Bibliographic Information
- © Copyright 1973 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 186 (1973), 151-169
- MSC: Primary 47H15; Secondary 58E15
- DOI: https://doi.org/10.1090/S0002-9947-1973-0341210-X
- MathSciNet review: 0341210