Abstract homotopy theory and generalized sheaf cohomology
HTML articles powered by AMS MathViewer
- by Kenneth S. Brown PDF
- Trans. Amer. Math. Soc. 186 (1973), 419-458 Request permission
Abstract:
Cohomology groups ${H^q}(X,E)$ are defined, where X is a topological space and E is a sheaf on X with values in Kan’s category of spectra. These groups generalize the ordinary cohomology groups of X with coefficients in an abelian sheaf, as well as the generalized cohomology of X in the usual sense. The groups are defined by means of the “homotopical algebra” of Quillen applied to suitable categories of sheaves. The study of the homotopy category of sheaves of spectra requires an abstract homotopy theory more general than Quillen’s, and this is developed in Part I of the paper. Finally, the basic cohomological properties are proved, including a spectral sequence which generalizes the Atiyah-Hirzebruch spectral sequence (in generalized cohomology theory) and the “local to global” spectral sequence (in sheaf cohomology theory).References
-
M. Artin, Grothendieck topologies, Harvard Seminar Notes, 1962.
M. Artin, A. Grothendieck and J.-L. Verdier, Séminaire de géométrie algébrique; Cohomologie étale des schémas, Inst. Hautes Etudes Sci., Paris, 1963/64.
- M. Artin and B. Mazur, Etale homotopy, Lecture Notes in Mathematics, No. 100, Springer-Verlag, Berlin-New York, 1969. MR 0245577
- A. K. Bousfield and D. M. Kan, Homotopy with respect to a ring, Algebraic topology (Proc. Sympos. Pure Math., Vol. XXII, Univ. Wisconsin, Madison, Wis., 1970) Amer. Math. Soc., Providence, R.I., 1971, pp. 59–64. MR 0326734
- Glen E. Bredon, Sheaf theory, McGraw-Hill Book Co., New York-Toronto, Ont.-London, 1967. MR 0221500
- Dan Burghelea and Aristide Deleanu, The homotopy category of spectra. I, Illinois J. Math. 11 (1967), 454–473. MR 219063
- Henri Cartan and Samuel Eilenberg, Homological algebra, Princeton University Press, Princeton, N. J., 1956. MR 0077480
- Albrecht Dold, Halbexakte Homotopiefunktoren, Lecture Notes in Mathematics, vol. 12, Springer-Verlag, Berlin-New York, 1966 (German). MR 0198464
- Albrecht Dold and Dieter Puppe, Homologie nicht-additiver Funktoren. Anwendungen, Ann. Inst. Fourier (Grenoble) 11 (1961), 201–312 (German, with French summary). MR 150183 A. Douady, La suite spectrale de Adams: Structure multiplicative, Sém. H. Cartan, 11 (1958/59), Exposé 19.
- P. Gabriel and M. Zisman, Calculus of fractions and homotopy theory, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 35, Springer-Verlag New York, Inc., New York, 1967. MR 0210125
- Roger Godement, Topologie algébrique et théorie des faisceaux, Actualités Scientifiques et Industrielles [Current Scientific and Industrial Topics], No. 1252, Hermann, Paris, 1958 (French). Publ. Math. Univ. Strasbourg. No. 13. MR 0102797
- Robin Hartshorne, Residues and duality, Lecture Notes in Mathematics, No. 20, Springer-Verlag, Berlin-New York, 1966. Lecture notes of a seminar on the work of A. Grothendieck, given at Harvard 1963/64; With an appendix by P. Deligne. MR 0222093
- Daniel M. Kan, Semisimplicial spectra, Illinois J. Math. 7 (1963), 463–478. MR 153017
- Daniel M. Kan, On the $k$-cochains of a spectrum, Illinois J. Math. 7 (1963), 479–491. MR 155319
- Daniel M. Kan and George W. Whitehead, The reduced join of two spectra, Topology 3 (1965), no. suppl, suppl. 2, 239–261. MR 178463, DOI 10.1016/0040-9383(65)90077-7
- Daniel M. Kan and George W. Whitehead, Orientability and Poincaré duality in general homology theories, Topology 3 (1965), 231–270. MR 190925, DOI 10.1016/0040-9383(65)90056-X
- Klaus Lamotke, Semisimpliziale algebraische Topologie, Die Grundlehren der mathematischen Wissenschaften, Band 147, Springer-Verlag, Berlin-New York, 1968 (German). MR 0245005
- J. Peter May, Simplicial objects in algebraic topology, Van Nostrand Mathematical Studies, No. 11, D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto, Ont.-London, 1967. MR 0222892
- J. Milnor, On axiomatic homology theory, Pacific J. Math. 12 (1962), 337–341. MR 159327
- Daniel G. Quillen, Homotopical algebra, Lecture Notes in Mathematics, No. 43, Springer-Verlag, Berlin-New York, 1967. MR 0223432
- George W. Whitehead, Generalized homology theories, Trans. Amer. Math. Soc. 102 (1962), 227–283. MR 137117, DOI 10.1090/S0002-9947-1962-0137117-6
Additional Information
- © Copyright 1973 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 186 (1973), 419-458
- MSC: Primary 55B30; Secondary 18H99
- DOI: https://doi.org/10.1090/S0002-9947-1973-0341469-9
- MathSciNet review: 0341469