Chebyshev constant and Chebyshev points
HTML articles powered by AMS MathViewer
- by Susan L. Friedman
- Trans. Amer. Math. Soc. 186 (1973), 129-139
- DOI: https://doi.org/10.1090/S0002-9947-1973-0370365-6
- PDF | Request permission
Abstract:
Using $\lambda$th power means in the case $\lambda \geq 1$, it is proven that the Chebyshev constant for any compact set in ${R_n}$, real Euclidean n-space, is equal to the radius of the spanning sphere. When $\lambda > 1$, the Chebyshev points of order m for all $m \geq 1$ are unique and coincide with the center of the spanning sphere. For the case $\lambda = 1$, it is established that Chebyshev points of order m for a compact set E in ${R_2}$ are unique if and only if the cardinality of the intersection of E with its spanning circle is greater than or equal to three.References
- Richard Courant and Herbert Robbins, What Is Mathematics?, Oxford University Press, New York, 1941. MR 0005358
- Nelson Dunford and Jacob T. Schwartz, Linear Operators. I. General Theory, Pure and Applied Mathematics, Vol. 7, Interscience Publishers, Inc., New York; Interscience Publishers Ltd., London, 1958. With the assistance of W. G. Bade and R. G. Bartle. MR 0117523
- M. Fekete, Über die Verteilung der Wurzeln bei gewissen algebraischen Gleichungen mit ganzzahligen Koeffizienten, Math. Z. 17 (1923), no. 1, 228–249 (German). MR 1544613, DOI 10.1007/BF01504345
- Einar Hille, Topics in classical analysis, Lectures on Modern Mathematics, Vol. III, Wiley, New York, 1965, pp. 1–57. MR 0178099 H. W. E. Jung, Über die kleinste Kugel, die eine räumliche Figur einschliest, J. Reine Angew. Math. 123 (1901), 241-257.
- B. R. Kripke and T. J. Rivlin, Approximation in the metric of $L^{1}(X,\,\mu )$, Trans. Amer. Math. Soc. 119 (1965), 101–122. MR 180848, DOI 10.1090/S0002-9947-1965-0180848-5 G. Pólya and G. Szegö, Über den transfiniten Durchmesser (Kapazitatskonstante) von ebenen und räumlichen Punktmengen, J. Reine Angew Math. 165 (1931), 4-49. I. M. Yaglom, Convex figures, Holt, Rinehart, and Winston, New York, 1961.
Bibliographic Information
- © Copyright 1973 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 186 (1973), 129-139
- MSC: Primary 52A40
- DOI: https://doi.org/10.1090/S0002-9947-1973-0370365-6
- MathSciNet review: 0370365