Structure theory for equational classes generated by quasi-primal algebras
HTML articles powered by AMS MathViewer
- by Robert W. Quackenbush
- Trans. Amer. Math. Soc. 187 (1974), 127-145
- DOI: https://doi.org/10.1090/S0002-9947-1974-0327619-X
- PDF | Request permission
Abstract:
Quasi-primal algebras (which include finite simple polyadic and cylindric algebras) were introduced by A. S. Pixley. In this paper equational classes generated hy quasi-primal algebras are investigated with respect to the following concepts: the congruence extension property, the amalgamation property and the amalgamation class, weak injectives and weak injective hulls, the standard semigroup of operators. A brief discussion of monadic algebras is included to illustrate the results of the paper.References
- B. Banaschewski, Injectivity and essential extensions in equational classes of algebras. , Proc. Conf. on Universal Algebra (Queen’s Univ., Kingston, Ont., 1969) Queen’s Univ., Kingston, Ont., 1970, pp. 131–147. MR 0258708
- Hyman Bass, Finite monadic algebras, Proc. Amer. Math. Soc. 9 (1958), 258–268. MR 94308, DOI 10.1090/S0002-9939-1958-0094308-5
- S. Comer and J. Johnson, The standard semigroup of operators of a variety, Algebra Universalis 2 (1972), 77–79. MR 308012, DOI 10.1007/BF02945011
- Alan Day, A note on the congruence extension property, Algebra Universalis 1 (1971/72), 234–235. MR 294215, DOI 10.1007/BF02944983
- Alfred L. Foster, Generalized “Boolean” theory of universal algebras. I. Subdirect sums and normal representation theorem, Math. Z. 58 (1953), 306–336. MR 57230, DOI 10.1007/BF01174150
- George Grätzer, Universal algebra, D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto, Ont.-London, 1968. MR 0248066
- G. Grätzer and H. Lakser, The structure of pseudocomplemented distributive lattices. II. Congruence extension and amalgamation, Trans. Amer. Math. Soc. 156 (1971), 343–358. MR 274359, DOI 10.1090/S0002-9947-1971-0274359-9
- G. Grätzer and H. Lakser, The structure of pseudocomplemented distributive lattices. III. Injective and absolute subretracts, Trans. Amer. Math. Soc. 169 (1972), 475–487. MR 309821, DOI 10.1090/S0002-9947-1972-0309821-4
- Paul R. Halmos, Algebraic logic, Chelsea Publishing Co., New York, 1962. MR 0131961
- Tah Kai Hu, On the topological duality for primal algebra theory, Algebra Universalis 1 (1971/72), 152–154. MR 294218, DOI 10.1007/BF02944971
- Donald Monk, On equational classes of algebraic versions of logic. I, Math. Scand. 27 (1970), 53–71. MR 280345, DOI 10.7146/math.scand.a-10987 D. Pigozzi, On some operations on classes of algebras, Notices Amer. Math. Soc. 13 (1966), 829 (Abstract #639-1).
- Alden F. Pixley, Functionally complete algebras generating distributive and permutable classes, Math. Z. 114 (1970), 361–372. MR 262148, DOI 10.1007/BF01110387
- Alden F. Pixley, The ternary discriminator function in universal algebra, Math. Ann. 191 (1971), 167–180. MR 292738, DOI 10.1007/BF01578706
- Robert W. Quackenbush, Demi-semi-primal algebras and Mal′cev-type conditions, Math. Z. 122 (1971), 166–176. MR 302538, DOI 10.1007/BF01110090
Bibliographic Information
- © Copyright 1974 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 187 (1974), 127-145
- MSC: Primary 08A15
- DOI: https://doi.org/10.1090/S0002-9947-1974-0327619-X
- MathSciNet review: 0327619