Smooth partitions of unity on manifolds
HTML articles powered by AMS MathViewer
- by John Lloyd
- Trans. Amer. Math. Soc. 187 (1974), 249-259
- DOI: https://doi.org/10.1090/S0002-9947-1974-0375374-X
- PDF | Request permission
Abstract:
This paper continues the study of the smoothness properties of (real) topological linear spaces. First, the smoothness results previously obtained about various important classes of locally convex spaces, such as Schwartz spaces, are improved. Then, following the ideas of Bonic and Frampton, we use these results to give sufficient conditions for the existence of smooth partitions of unity on manifolds modelled on topological linear spaces.References
- E. Asplund and R. T. Rockafellar, Gradients of convex functions, Trans. Amer. Math. Soc. 139 (1969), 443–467. MR 240621, DOI 10.1090/S0002-9947-1969-0240621-X
- V. I. Averbuh and O. G. Smoljanov, Differentiation theory in linear topological spaces, Uspehi Mat. Nauk 22 (1967), no. 6 (138), 201–260 (Russian). MR 0223886
- V. I. Averbuh and O. G. Smoljanov, Different definitions of derivative in linear topological spaces, Uspehi Mat. Nauk 23 (1968), no. 4 (142), 67–116 (Russian). MR 0246118 Theodoros S. Bolis, Smooth partitions of unity in some infinitely dimensional manifolds (to appear).
- Robert Bonic and John Frampton, Smooth functions on Banach manifolds, J. Math. Mech. 15 (1966), 877–898. MR 0198492
- N. Bourbaki, Éléments de mathématique. Fasc. XXXIII. Variétés différentielles et analytiques. Fascicule de résultats (Paragraphes 1 à 7), Actualités Scientifiques et Industrielles [Current Scientific and Industrial Topics], No. 1333, Hermann, Paris, 1967 (French). MR 0219078
- J. Dieudonné, Foundations of modern analysis, Pure and Applied Mathematics, Vol. 10-I, Academic Press, New York-London, 1969. Enlarged and corrected printing. MR 0349288
- Jean Dieudonné and Laurent Schwartz, La dualité dans les espaces $\scr F$ et $(\scr L\scr F)$, Ann. Inst. Fourier (Grenoble) 1 (1949), 61–101 (1950) (French). MR 38553
- A. Frölicher and W. Bucher, Calculus in vector spaces without norm, Lecture Notes in Mathematics, No. 30, Springer-Verlag, Berlin-New York, 1966. MR 0213869, DOI 10.1007/BFb0068432 G. Köthe, Topologische linear Räume. I, Die Grundlehren der math. Wissenschaften, Band 107, Springer-Verlag, Berlin, 1960; English transl., Die Grundlehren der math. Wissenschaften, Band 159, Springer-Verlag, New York, 1969. MR 24 #A411; 40 #1750.
- Serge Lang, Introduction to differentiable manifolds, Interscience Publishers (a division of John Wiley & Sons, Inc.), New York-London, 1962. MR 0155257 Michel Leduc, Jauges différentiables et partitions de l’unité, Séminaire Choquet, 1964/65, no. 12.
- John W. Lloyd, Inductive and projective limits of smooth topological vector spaces, Bull. Austral. Math. Soc. 6 (1972), 227–240. MR 295031, DOI 10.1017/S0004972700044452
- John Lloyd, Differentiable mappings on topological vector spaces, Studia Math. 45 (1973), 147–160; corrigenda, ibid. 49 (1973), 99–100. MR 333724, DOI 10.4064/sm-45-2-147-160 —, Two topics in the differential calculus on topological linear spaces, Ph.D. dissertation at the Australian National University.
- Jean-Paul Penot, Calcul différentiel dans les espaces vectoriels topologiques, Studia Math. 47 (1973), 1–23 (French). MR 336334, DOI 10.4064/sm-47-1-1-23
- Daniel J. Randtke, A structure theorem for Schwartz spaces, Math. Ann. 201 (1973), 171–176. MR 326347, DOI 10.1007/BF01359795
- A. H. Stone, Paracompactness and product spaces, Bull. Amer. Math. Soc. 54 (1948), 977–982. MR 26802, DOI 10.1090/S0002-9904-1948-09118-2 S. Yamamuro, Lecture notes on differential calculus, 1971 (mimeographed).
Bibliographic Information
- © Copyright 1974 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 187 (1974), 249-259
- MSC: Primary 58C20
- DOI: https://doi.org/10.1090/S0002-9947-1974-0375374-X
- MathSciNet review: 0375374