Isolated singularities for solutions of the nonlinear stationary Navier-Stokes equations
HTML articles powered by AMS MathViewer
- by Victor L. Shapiro
- Trans. Amer. Math. Soc. 187 (1974), 335-363
- DOI: https://doi.org/10.1090/S0002-9947-1974-0380158-2
- PDF | Request permission
Abstract:
The notion for (u, p) to be a distribution solution of the nonlinear stationary Navier-Stokes equations in an open set is defined, and a theorem concerning the removability of isolated singularities for distribution solutions in the punctured open ball $B(0,{r_0}) - \{ 0\}$ is established. This result is then applied to the classical situation to obtain a new theorem for the removability of isolated singularities. In particular, in two dimensions this gives a better than expected result when compared with the theory of removable isolated singularities for harmonic functions.References
- A. P. Calderón and A. Zygmund, Singular integrals and periodic functions, Studia Math. 14 (1954), 249–271 (1955). MR 69310, DOI 10.4064/sm-14-2-249-271 Günter Hellwig, Partielle Differentialgleichungen: Eine Einführung, Mathematische Leitfäden, Teubner Verlagsgesellschaft, Stuttgart, I960; English transl., Blaisdell, Waltham, Mass., 1964. MR 22 #5794; MR 30 #3286. O. A. Ladyženskaja, Mathematical problems in the dynamics of a viscous incompressible flow, Fizmatgiz, Moscow, 1961; English rev. ed., Gordon and Breach, New York, 1969. MR 27 #5034a; MR 40 #7610.
- Victor L. Shapiro, Topics in Fourier and geometric analysis, Mem. Amer. Math. Soc. 39 (1961), 100. MR 147826
- Victor L. Shapiro, Fourier series in several variables, Bull. Amer. Math. Soc. 70 (1964), 48–93. MR 158222, DOI 10.1090/S0002-9904-1964-11026-0
- Victor L. Shapiro, Characteristic planes and pointwise solutions of the heat equation, Indiana Univ. Math. J. 20 (1970/71), 115–133. MR 264248, DOI 10.1512/iumj.1970.20.20012
- Victor L. Shapiro, Removable sets for pointwise solutions of the generalized Cauchy-Riemann equations, Ann. of Math. (2) 92 (1970), 82–101. MR 437898, DOI 10.2307/1970698
- Lipman Bers, Fritz John, and Martin Schechter, Partial differential equations, Lectures in Applied Mathematics, vol. 3, American Mathematical Society, Providence, R.I., 1979. With supplements by Lars Gȧrding and A. N. Milgram; With a preface by A. S. Householder; Reprint of the 1964 original. MR 598466
- A.-P. Calderón and A. Zygmund, Local properties of solutions of elliptic partial differential equations, Studia Math. 20 (1961), 171–225. MR 136849, DOI 10.4064/sm-20-2-181-225
- R. H. Dyer and D. E. Edmunds, Removable singularities of solutions of the Navier-Stokes equations, J. London Math. Soc. (2) 2 (1970), 535–538. MR 265788, DOI 10.1112/jlms/2.Part_{3}.535
Bibliographic Information
- © Copyright 1974 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 187 (1974), 335-363
- MSC: Primary 35Q10
- DOI: https://doi.org/10.1090/S0002-9947-1974-0380158-2
- MathSciNet review: 0380158