Weak compactness in the order dual of a vector lattice
HTML articles powered by AMS MathViewer
- by Owen Burkinshaw
- Trans. Amer. Math. Soc. 187 (1974), 183-201
- DOI: https://doi.org/10.1090/S0002-9947-1974-0394098-6
- PDF | Request permission
Abstract:
A sequence $\{ {x_n}\}$ in a vector lattice E will be called an l’-sequence if there exists an x in E such that $\Sigma _{k = 1}^n|{x_k}| \leq x$ for all n. Denote the order dual of E by ${E^b}$. For a set $A \subset {E^b}$, let ${\left \| \cdot \right \|_{{A^ \circ }}}$ denote the Minkowski functional on E defined by its polar ${A^ \circ }$ in E. A set $A \subset {E^b}$ will be called equi-l’-continuous on E if $\lim {\left \| {{x_n}} \right \|_{{A^ \circ }}} = 0$ for each l’-sequence $\{ {x_n}\}$ in E. The main objective of this paper will be to characterize compactness in ${E^b}$ in terms of the order structure on E and ${E^b}$. In particular, the relationship of equi-l’-continuity to compactness is studied. §2 extends to ${E^{\sigma c}}$ the results in Kaplan [8] on vague compactness in ${E^C}$. Then this is used to study vague convergence of sequences in ${E^b}$.References
- Tsuyoshi Andô, Convergent sequences of finitely additive measures, Pacific J. Math. 11 (1961), 395–404. MR 137806, DOI 10.2140/pjm.1961.11.395
- Nelson Dunford and Jacob T. Schwartz, Linear Operators. I. General Theory, Pure and Applied Mathematics, Vol. 7, Interscience Publishers, Inc., New York; Interscience Publishers Ltd., London, 1958. With the assistance of W. G. Bade and R. G. Bartle. MR 0117523
- Peter Gänssler, Compactness and sequential compactness in spaces of measures, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 17 (1971), 124–146. MR 283562, DOI 10.1007/BF00538864
- A. Grothendieck, Sur les applications linéaires faiblement compactes d’espaces du type $C(K)$, Canad. J. Math. 5 (1953), 129–173 (French). MR 58866, DOI 10.4153/cjm-1953-017-4
- Samuel Kaplan, On the second dual of the space of continuous functions, Trans. Amer. Math. Soc. 86 (1957), 70–90. MR 90774, DOI 10.1090/S0002-9947-1957-0090774-3
- Samuel Kaplan, The second dual of the space of continuous functions. II, Trans. Amer. Math. Soc. 93 (1959), 329–350. MR 112030, DOI 10.1090/S0002-9947-1959-0112030-9 —, Closure properties of $C(X)$ in its second dual, Proc. Amer. Math. Soc. 17 (1966), 491-406. MR 32 #6260.
- Samuel Kaplan, On weak compactness in the space of Radon measures, J. Functional Analysis 5 (1970), 259–298. MR 0261317, DOI 10.1016/0022-1236(70)90030-3
- Hidegoro Nakano, Linear lattices, Wayne State University Press, Detroit, Mich., 1966. MR 0194878
- Anthony L. Peressini, Ordered topological vector spaces, Harper & Row, Publishers, New York-London, 1967. MR 0227731
- Helmut H. Schaefer, Weak convergence of measures, Math. Ann. 193 (1971), 57–64. MR 288562, DOI 10.1007/BF02052855
Bibliographic Information
- © Copyright 1974 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 187 (1974), 183-201
- MSC: Primary 46A40
- DOI: https://doi.org/10.1090/S0002-9947-1974-0394098-6
- MathSciNet review: 0394098