WEAK COMPACTNESS IN THE ORDER DUAL OF A VECTOR LATTICE

BY

OWEN BURKINSHAW

ABSTRACT. A sequence $\{x_n\}$ in a vector lattice E will be called an l'-sequence if there exists an x in E such that $\sum_{k=1}^n |x_k| \le x$ for all n. Denote the order dual of E by E^b . For a set $A \subseteq E^b$, let $\|\cdot\|_A \circ$ denote the Minkowski functional on E defined by its polar A° in E. A set $A \subseteq E^b$ will be called equi-l'-continuous on E if $\lim \|x_n\|_A \circ = 0$ for each l'-sequence $\{x_n\}$ in E. The main objective of this paper will be to characterize compactness in

The main objective of this paper will be to characterize compactness in E^b in terms of the order structure on E and E^b . In particular, the relationship of equi-1-continuity to compactness is studied. §2 extends to $E^{\sigma c}$ the results in Kaplan [8] on vague compactness in E^c . Then this is used to study vague convergence of sequences in E^b .

1. Introduction. The main objective of this paper will be to characterize compactness in the order dual E^b of a vector lattice E in terms of the order structure on E. § 2 extends to $E^{\sigma c}$ results in Kaplan [8] on vague compactness in E^c . Then § 3 considers the order dual E^b of a vector lattice, and Theorem (3.8) characterizes compactness in E^b in terms of the order structure. These results are then used in § 4 to extend those in Schaefer [11] on vaguely convergent sequences. We now give the basic properties of a vector lattice that will be needed.

Throughout this paper, we will always assume that a vector lattice E is archimedean. A set in E will be called order bounded if it is contained in some interval $[x, y] = \{z \in E : x \le z \le y\}$. A subset A of E will be called solid if it has the property: $x \in A$, $|y| \le |x|$ implies $y \in A$. The solid envelope of A is the smallest solid set containing A. In fact, the solid envelope of A is the set $\bigcup_{x \in A} [-|x|, |x|]$.

A vector lattice E will be called *complete* if the sup $\bigvee A$ and inf $\bigwedge A$ of every order bounded set A exist. E will be called σ -complete if the sup and inf of every countable order bounded set exist.

A net $\{x_{\alpha}\}$ in E is ascending (respectively descending) if for every pair of indices, $\alpha \leq \beta$ implies $x_{\alpha} \leq x_{\beta}$ (respectively $x_{\alpha} \geq x_{\beta}$). The notation $x_{\alpha} \uparrow x$ means that x_{α} is ascending and $x = \bigvee x_{\alpha}$; similarly for $x_{\alpha} \downarrow x$. A net $\{x_{\alpha}\}$ is

Received by the editors October 2, 1972.

AMS (MOS) subject classifications (1970). Primary 46A40.

said to order converge to x if there exists a net $\{y_{\alpha}\}$ such that $y_{\alpha} \downarrow 0$ and $|x_{\alpha} - x| \leq y_{\alpha}$ for all α . We will denote order convergence by $x_{\alpha} \to x$. A subset A of E will be called order closed if for every net $\{x_{\alpha}\}$ in A, $x_{\alpha} \to x$ implies that $x \in A$. Given any set A, the smallest order closed set containing A will be called the order closure of A, and denotes by \overline{A} .

An ideal I of E is a linear subspace with the property that $a \in I$, $|b| \le |a|$ implies $b \in I$. If an ideal I has a complementary ideal J, that is $E = I \oplus J$, then I will be called a band. It follows that there is a canonical projection of E onto I. We will denote the image of a set A under this projection by A_I : $A_I = \{x_I: x \in A\}$. This canonical projection preserves sup's and inf's: $x = \bigvee A$ implies $x_I = \bigvee A_I$ and $x = \bigwedge A$ implies $x_I = \bigwedge A_I$.

Two elements x, y of E are called disjoint if $|x| \land |y| = 0$. Given a set A in E we will denote by A' the set $\{x \in E : |x| \land |y| = 0 \text{ for all } y \text{ in } A\}$. It can be shown that A' is a closed ideal and that (A')' is the closed ideal generated by A. It follows that if $E = I \oplus J$, then $J = I' \cdot L$ Later we will need the following:

Theorem 1.1 (Riesz). If E is complete, every closed ideal I is a band: $E = I \oplus I'$.

A real linear functional f on E will be called bounded if it is bounded on every order bounded set of E. The vector space of bounded linear functionals on E will be called the bounded dual of E and denoted by E^b . Under the definition $f \leq g$ if $\langle x, f \rangle \leq \langle x, g \rangle$ for all x in E^+ (the positive cone of E), E^b is a complete vector lattice.

A linear functional f on E will be called *continuous* if $x_{\alpha} \to x$ in E implies $\lim_{\alpha} \langle x_{\alpha}, f \rangle = \langle x, f \rangle$. We will denote the set of continuous linear functionals on E by E^c . A linear functional f on E will be called σ -continuous if $x_n \to x$ in E implies $\lim_n \langle x_n, f \rangle = \langle x, f \rangle$, and the set of σ -continuous linear functionals on E will be denoted by E^{σ_c} . Then $E^c \subset E^{\sigma_c} \subset E^b$, and, in fact, E^c and E^{σ_c} are each a band in E^b .

The weak topology on E defined by E^b will be denoted by $w(E, E^b)$. In this paper E^b will always be taken separating on E, hence the weak topology $w(E, E^b)$ is Hausdorff. E^b also defines a finer topology on E than the weak topology. This topology is given by the family of seminorms $\|\cdot\|_y$, y running through E^b , where $\|x\|_y = \langle |x|, |y| \rangle$ for each x in E. We will denote it by $|w|(E, E^b)$. An equivalent definition of this topology is that it is the topology given by the polars in E of intervals of E^b .

In a similar manner, $|w|(E^b, E)$ is defined on E^b by the family of seminorms $\|\cdot\|_x$, where now x runs through E. Also, E defines the vague (or weak*) topology on E^b , denoted by $w(E^b, E)$.

2. Compactness in E^{σ_c} and E^{σ_c} . A sequence $\{x_n\}$ in a vector lattice E will be called an l'-sequence if there exists an element x in E such that $\sum_{1}^{n}|x_k| \leq x$ for all n. It is clear that if $\{x_n\}$ is an l'-sequence and $|y_n| \leq |x_n|$, then $\{y_n\}$ is also an l'-sequence.

Any l' sequence $\{x_n\}$ converges to 0 in $|w|(E, E^b)$. For there exists x in E such that $\sum_{1}^{n}|x_k| \leq x$ for all n. Now consider $y \in E^b$, then $\sum_{1}^{n}\langle |x_k|, |y|\rangle \leq \langle x, |y|\rangle$, and thus $\lim_{n}\langle |x_n|, |y|\rangle = 0$.

Given a subset A if E^b we will denote by $\|\cdot\|_{A^0}$ the Minkowski functional on E defined by its polar A^0 in E. Thus for each x in E we have $\|x\|_{A^0} = \sup_{y \in A} |\langle x, y \rangle|$.

Consider the sublattices of E^c and $E^{\sigma c}$. Each element of E^c is continuous with respect to order convergence of nets of E, and each element of $E^{\sigma c}$ is continuous with respect to order convergence of sequences of E; whereas, each element of E^b is continuous with respect to convergence (always to 0, of course) of l'-sequence of E. The analogy of this for a set of linear functionals is the following.

Definition 2.1. 1. A subset A of E^c will be called equicontinuous on E if $\lim_{\alpha} \|x_{\alpha}\|_{A^0} = 0$ for each net $x_{\alpha} \to 0$ in E.

- 2. A subset A of E^{σ_c} will be called equi- σ -continuous on E if $\lim_n \|x_n\|_{A^{\circ}} = 0$ for each sequence $x_n \to 0$ in E.
- 3. A subset A of E^b will be called equi-l'-continuous on E if $\lim_n \|x_n\|_{A^0} = 0$ for each l'-sequence $\{x_n\}$ in E.

Equivalently, (2.1) says that A is equicontinuous on E if each order convergent net in E converges uniformly on A; A is equi- σ -continuous if each order convergent sequence in E converges uniformly on A; and A is equi-l continuous if each l sequence converges to 0 uniformly on A. We now give some basic properties of equi-l continuous subsets of E^b .

Proposition 2.2. An equi-l'-continuous set A of linear functionals on E is $|w|(E^b, E)$ -bounded.

Proof. Let x be an element of E and suppose $\sup_{y \in A} \langle |x|, |y| \rangle = \infty$. For each n choose y_n in A such that $\langle |x|, |y_n| \rangle > 2^n$. Now $\langle |x|, |y_n| \rangle = \sup_{|b| \le |x|} |\langle b, y_n \rangle|$, so choose $|b_n| \le |x|$ such that $|\langle b_n, y_n \rangle| > 2^n$, thus $|\langle b_n/2^n, y_n \rangle| > 1$. But $\{b_n/2^n\}$ is an l'-sequence in E, and we have a contradiction since A is equi-l'-continuous on E.

Proposition 2.3. A subset A of E^b is equi-l'-continuous on E if and only if its (convex) solid envelope is equi-l'-continuous on E.

Proof. We need only consider the solid envelope B of A, since it is clear that equi-l'-continuity is equivalent for a set and its convex envelope.

Suppose B is not equi-l'-continuous, then there exists $\epsilon > 0$ and an l'-sequence

 $\{x_n\}$ such that $\|x_n\|_{B^\circ} > \epsilon$. Since $\{x_n\}$ is an l'-sequence there is an element x of E such that $\sum_{1}^{n} |x_k| \le x$ for all n. Since $\|x_n\|_{B^\circ} > \epsilon$, choose $\{y_n\} \in A$ such that $(|x_n|, |y_n|) > \epsilon$.

By standard formula $\langle |x_n|, |y_n| \rangle = \sup_{|b| \le |x_n|} |\langle b, y_n \rangle|$, so choose $|b_n| \le |x_n|$ such that $|\langle b_n, y_n \rangle| > \epsilon$. But $\{b_n\}$ is also an l'-sequence, and $\|b_n\|_{A^0} \ge |\langle b_n, y_n \rangle| \ge \epsilon$. Thus we have a contradiction of A being equi-l'-continuous on E.

Remark. To show that a subset A of E^b is equi-l'-continuous on E, one need only show that $\lim_n \|x_n\|_{A^0} = 0$ for each positive l' sequence of E. This follows since $\|x_n\|_{A^0} \le \|x_n^+\|_{A^0} + \|x_n^-\|_{A^0}$ and $\{x_n^+\}$ (respectively $\{x_n^-\}$) is a positive l'-sequence whenever $\{x_n^-\}$ is an l' sequence of E.

Proposition 2.4. Let A be a subset of E^b ; the following are equivalent:

- (1) A is equi-l'-continuous on E.
- (2) Every bounded monotone net in E is $\|\cdot\|_{A^{\circ}}$ -Cauchy.
- (3) Every bounded monotone sequence in E is $\|\cdot\|_A$ o-Cauchy.

Proof. (1) \Rightarrow (2) Suppose (2) does not hold, then there exists a bounded monotone increasing net $\{x_{\alpha}\}$ which is not $\|\cdot\|_A$ o-Cauchy. Thus there exist $\epsilon > 0$ and $\alpha_1 \le \alpha_2 \le \cdots$ such that $\|x_{\alpha_{n+1}} - x_{\alpha_n}\|_A \circ > \epsilon$. Now $\{x_{\alpha}\}$ is order bounded by some element x on E, so $\sum_{k=1}^n (x_{\alpha_{k+1}} - x_{\alpha_k}) = (x_{\alpha_{n+1}} - x_{\alpha_1}) \le (x - x_{\alpha_1})$. Thus $\{(x_{\alpha_{k+1}} - x_{\alpha_k})\}$ is an l'-sequence in E and we have a contradiction.

Of course, (2) implies (3).

(3) \Rightarrow (1) Consider a positive *l'*-sequence $\{x_n\}$ in E. Set $y_n = \sum_{i=1}^n x_k$. Then $\{y_n\}$ is a bounded monotone increasing sequence of E. Thus

$$\lim_{n} \|x_{n}\|_{A^{\circ}} = \lim_{n} \|y_{n} - y_{n-1}\|_{A^{\circ}} = 0$$

and the proof is complete.

Contained in the above proof is the following useful observation:

Corollary 2.5. A subset A of E^b is equi-l'-continuous on E if and only if every countable subset of A is equi-l'-continuous on E.

The main result (2.8) of this section is the characterization of vaguely compact subsets of $E^{\sigma c}$ in terms of the order structure on E, in particular, in terms of equi- σ -continuity on E.

Proposition 2.6. Let E be σ -complete. Then for $A \subset E^{\sigma_C}$ the following are equivalent:

- (1) A is equi-σ-continuous on E.
- (2) A is equi-l'-continuous on E.

Proof. Since E is σ -complete, it follows that $x_n \to 0$ for any l'-sequence $\{x_n\}$ in E. Hence (1) implies (2).

Assume (2) holds. Note that we may take A solid. Let $x_n \to 0$ in E, then there exist $y_n \downarrow 0$ such that $|x_n| \leq y_n$. Let $\epsilon > 0$. By (2.4) choose k such that $\|y_n - y_m\|_A \circ < \epsilon$ for $n, m \geq k$. Fix $n \ (n \geq k)$. Since $\|x_n\|_A \circ = \sup_{z \in A} |\langle x_n, z \rangle|$, choose $z \in A$ such that $\|x_n\|_A \circ \leq |\langle x_n, z \rangle| + \epsilon$. Then for $m \geq k$

$$\|x_n\|_{A,0} \le \langle y_n, |z| \rangle + \epsilon \le \|y_n - y_m\|_{A,0} + \langle y_m, |z| \rangle + \epsilon \le \langle y_m, |z| \rangle + 2\epsilon.$$

But $\lim_{m} \langle y_m, |z| \rangle = 0$, thus $\|x_n\|_{A^{\circ}} \le 3\epsilon$ for $n \ge k$. Hence $\lim_{n} \|x_n\|_{A^{\circ}} = 0$ and the proof is complete.

Proposition 2.7. Let E be σ -complete. Then for $A \subseteq E^{\sigma_C}$ the following are equivalent:

- (1) A is equi-σ-continuous on E.
- (2) $x_n \downarrow 0$ in E implies $\lim_n ||x_n||_{A^{\circ}} = 0$.

Proof. That (1) implies (2) follows from the definition of A being equi- σ -continuous on E. Assume (2) holds, and suppose A is not equi- σ -continuous on E. Then there exist $\epsilon > 0$ and a sequence $x_n \to 0$ in E such that $||x_n||_{A^0} > \epsilon$.

Since $x_n \to 0$ in E, there exists a sequence $\{y_n\}$ in E with $|x_n| \le y_n$ and $y_n \downarrow 0$. Choose z_1 in A such that $|\langle x_1, z_1 \rangle| > \epsilon$. Since $y_n \downarrow 0$, $(y_n \lor x_1) \downarrow x_1$, hence since z_1 belongs to $E^{\circ c}$, there exists n_1 such that $|\langle y_{n_1} \lor x_1, z_1 \rangle| > \epsilon$. There exists z_2 in A such that $|\langle x_{n_1}, z_2 \rangle| > \epsilon$. Since $(y_n \lor x_{n_1}) \downarrow x_{n_1}$, there exists $n_1 = 1$ such that $|\langle x_{n_1}, x_2 \rangle| > \epsilon$. Proceeding inductively we obtain $|\langle x_{n_1}, x_2 \rangle| > \epsilon$. Proceeding inductively we obtain $|\langle x_{n_1}, x_2 \rangle| > \epsilon$. Set $|\langle x_{n_1}, x_2 \rangle| > \epsilon$. Set $|\langle x_{n_1}, x_2 \rangle| > \epsilon$. Thus (2) fails to hold, and the proof is complete.

For a σ -complete vector lattice E, vague compactness in E^{σ_c} is completely characterized by equi- σ -continuity on E.

Theorem 2.8. If E is σ -complete, then for $A \subset E^{\sigma_C}$ the following are equivalent:

- (1) A is equi- σ -continuous on E.
- (2) A is relatively $w(E^{\sigma_c}, E)$ -compact in E^{σ_c} .
- **Proof.** (1) \Rightarrow (2) It follows from (2.2) that A is $|w|(E^{\sigma_c}, E)$ -bounded, hence $w(E^{\sigma_c}, E)$ -bounded. Thus its vague closure B in the algebraic dual E^* of E is $w(E^*, E)$ -compact. Thus one need only show that $B \subseteq E^{\sigma_c}$. This follows easily from the fact that order convergent sequences of E must converge uniformly on A.
- (2) \Rightarrow (1) Suppose A is not equi- σ -continuous on E, then there exist $\epsilon > 0$ and a positive l'-sequence $\{w_k\}$ in E such that $\|w_k\|_{A^\circ} > 2\epsilon$.

Set $k_1 = 1$ and choose y_1 in A such that $|\langle w_{k_1}, y_1 \rangle| > 2\epsilon$. Now $\lim_{k} \langle w_{k'}, y_1 \rangle = 0$, since $\{w_k\}$ is an l'-sequence. It follows that we can choose an

integer k_2 and an element y_2 in A so that $|\langle w_{k2}, y_1 \rangle| \le \epsilon$ and $|\langle w_{k2}, y_2 \rangle| > 2\epsilon$. Proceeding inductively, we obtain sequences $\{w_{kn}\}, \{y_n\} \in A$ such that $|\langle w_{kn}, y_n \rangle| > 2\epsilon$ and $|\langle w_{kn+1}, y_m \rangle| \le \epsilon$ for $m \le k_n$. Hence $|\langle w_{kn}, y_n - y_m \rangle| \ge \epsilon$ for $m \le k_n$. For simplicity of notation, let our original sequences have this property: $|\langle w_k, y_k - y_m \rangle| > \epsilon$ for $m \le k$.

Since $\{y_k\}$ is relatively $w(E^{\sigma c}, E)$ -compact it has a $w(E^{\sigma c}, E)$ accumulation point y in $E^{\sigma c}$. By a diagonal method we can choose a subsequence $\{y_{k_n}\}$ such that $\lim_n \langle w_k, y_{k_n} \rangle = \langle w_k, y \rangle$ for each k.

Set
$$z_n = (y_{k_n} - y_{k_{n-1}})$$
 and $x_n = w_{k_n}$. Then we have that

(i)
$$|\langle x_n, z_n \rangle| \ge \epsilon$$
 and $\lim_{k} \langle x_n, z_k \rangle = 0$ for each n .

We will construct an element v in E such that $|\langle v, z_{n_k} \rangle| \ge \epsilon/3$ for an infinite subsequence n_k , where $v = \sum_{k=1}^{\infty} x_{n_k}$.

Suppose this construction is completed. Since $\{z_{n_k}\}$ is also relatively $w(E^{\sigma_c}, E)$ -compact, it has a $w(E^{\sigma_c}, E)$ accumulation point z. By line (i) $\lim_k \langle x_n, z_{n_k} \rangle = 0$. Therefore, since z is a $w(E^{\sigma_c}, E)$ accumulation point of $\{z_{n_k}\}$, if follows that $\langle x_n, z \rangle = 0$ for each n. But $v = \sum_{k=1}^{\infty} x_{n_k}$ and $z \in E^{\sigma_c}$, so $\langle v, z \rangle = \sup_m \langle \sum_{k=1}^n x_{n_k}, z \rangle = 0$.

Thus we have that $|\langle v, z_{n_k} \rangle| \ge \epsilon/3$ and $\langle v, z \rangle = 0$, which contradicts z being a $w(E^{\sigma_c}, E)$ accumulation point of $\{z_{n_k}\}$.

We now construct the element $v = \sum_{1}^{\infty} x_{n_k}$ by induction. Setting $n_0 = 1$, we will define inductively an increasing sequence of integers n_i such that

(ii)
$$\sum_{i=1}^{j-1} |\langle x_{n_i}, z_{n_j} \rangle| < \epsilon/3 \quad \text{and} \quad \sum_{n=n_j}^{\infty} |\langle x_n, z_{n_{j-1}} \rangle| < \epsilon/3.$$

Assume n_1, \dots, n_j are defined. Since $\{z_n\}$ converges to 0 on the x_n 's there exists $m_1 > (n_j + 1)$ with $\sum_{i=1}^j |\langle x_{n_i}, z_n \rangle| < \epsilon/3$ for $n \ge m_1$. Since $\{x_n\}$ is a positive l'-sequence, there exists an x in E with $\sum_{k=1}^n x_k \le x$ for all n. Therefore

$$\sum_{n=1}^{\infty} |\langle x_n, z_{n_j} \rangle| \le \sum_{n=1}^{\infty} \langle x_n, |z_{n_j}| \rangle \le \langle x, |z_{n_j}| \rangle.$$

Thus there exists $m_2 > m_1$ with $\sum_{n=m_2}^{\infty} |\langle x_{n'}, z_{n_j} \rangle| < \epsilon/3$. Set $n_{j+1} = m_2$ and we have that $\sum_{i=1}^{j} |\langle x_{n_i}, z_{n_j+1} \rangle| < \epsilon/3$ and $\sum_{n=n_j+1}^{\infty} |\langle x_{n'}, z_{n_j} \rangle| < \epsilon/3$. This completes the induction.

By line (ii) we have

(iii)
$$\sum_{i=j+1}^{\infty} |\langle x_{n_i}, z_{n_j} \rangle| \le \sum_{n=n_{j+1}}^{\infty} |\langle x_n, z_{n_j} \rangle| < \epsilon/3.$$

Set $v = \sum_{i=1}^{\infty} x_{n_i}$, v exists in E since $\{x_n\}$ is an l'-sequence and E is σ -complete. Note that $v = \sup_{m} (\sum_{i=1}^{m} x_{n_i})$ and $\{z_{n_i}\} \in E^{\sigma_c}$, thus

$$\begin{split} &|\langle v,\,z_{n_j}\rangle|=\sup_{m}\left|\sum_{i=1}^{m}\left\langle x_{n_i},\,z_{n_j}\right\rangle\right|,\\ &|\langle v,\,z_{n_j}\rangle|\geq\sup_{m}\left|\sum_{i=1}^{j-1}\left\langle x_{n_i},\,z_{n_j}\right\rangle+\left\langle x_{n_j},\,z_{n_j}\right\rangle+\sum_{i=j+1}^{m}\left\langle x_{n_i},\,z_{n_j}\right\rangle\right|,\\ &|\langle v,\,z_{n_j}\rangle|\geq|\langle x_{n_j},\,z_{n_j}\rangle|-\sum_{i=1}^{j-1}|\langle x_{n_i},\,z_{n_j}\rangle|-\sum_{i=j+1}^{m}|\langle x_{n_i},\,z_{n_j}\rangle|. \end{split}$$

By lines (i), (ii), and (iii), we have $|\langle v, z_{n_j} \rangle| \ge \epsilon/3$, and this completes the proof. Combining (2.6) and (2.8) with (2.3) we have

Corollary 2.9. Let E be σ -complete. If A is relatively $w(E^{\sigma_c}, E)$ -compact in E^{σ_c} then so is its convex solid envelope.

Consider an order bounded set $\{x_n\}$ of mutually disjoint elements of E. Then $\bigvee_{1}^{n}|x_k|=\sum_{1}^{n}|x_k|$, so $\{x_n\}$ is an l'sequence of E. This very special class of l'-sequences will also characterize vaguely compact sets of E^{σ_c} .

Proposition 2.11. If E is σ -complete and $A \subset E^{\sigma_c}$, then the following are equivalent:

- (1) A is relatively $w(E^{\sigma_c}, E)$ -compact.
- (2) (a) A is $|w|(E^{\sigma_c}, E)$ bounded. (b) If $\{x_n\}$ is a bounded set of mutually disjoint elements of E, then $\lim_n ||x_n||_{A^{\circ}} = 0$.

Proof. If the x_n 's are bounded and mutually disjoint, then $\{x_n\}$ is an l'-sequence; hence (1) implies (2).

We complete the proof by showing that (2) above implies (2) of (2.7). Thus A will be equi- σ -continuous on E, and hence by (2.8) relatively $w(E^{\sigma_c}, E)$ -compact.

It is easy to show that (2) above must also hold for the solid envelope of A. Hence we may suppose A is solid. Now suppose that (2.7) does not hold. Then there exist $\epsilon > 0$, $x_n \downarrow 0$ in E, and $\{y_n\} \subset A$ such that $|\langle x_n, y_n \rangle| > 3\epsilon$ and $|\langle x_{n+1}, y_n \rangle| < \epsilon^2$. Moreover since $|y_n| \in A$, we may take $y_n \geq 0$. Also, A is $|w|(E^{\sigma_c}, E)$ bounded so there exist real $\lambda > 0$ such that $\langle x_1, y_n \rangle < \lambda$ for all n. There is no loss of generality in supposing that $\lambda = 1$.

The following elementary relations are easily verified:

Let $x \ge 0$ and z in the closed ideal generated by x in E; then

- (i) If $f = x_z +$, then $z_f = z^+$.
- (ii) If $f = x_{(z-\lambda x)}$ +, then $\lambda / \leq z_f$.

Let $f_n + g_n = x_1$, where f_n is the projection of x_1 on the closed ideal generated by $(x_n - \epsilon x_1)^+$. It is easily verified that $f_n \downarrow 0$. By (i) and (ii), it follows that $\epsilon f_n \leq x_n$ and $x_n \wedge g_n \leq \epsilon x_1$, thus $x_n = x_n \wedge x_1 = x_n \wedge f_n + x_n \wedge g_n \leq f_n + \epsilon x_1$. Hence

$$\langle x_n, y_n \rangle \le \langle f_n, y_n \rangle + \langle \epsilon x_1, y_n \rangle \le \langle f_n - f_{n+1}, y_n \rangle + \langle f_{n+1}, y_n \rangle + \epsilon$$

$$\le \|f_n - f_{n+1}\|_{A^0} + 2\epsilon.$$

Note that $\{(f_n - f_{n+1})\}$ are mutually disjoint and bounded, hence $\lim_n \|f_n - f_{n+1}\|_{A^0} = 0$. Thus we obtain $\langle x_n, y_n \rangle \leq 3\epsilon$ for n large enough. This contradicts the choice of y_n 's and completes the proof.

Since the elements of E^c are continuous with respect to order convergence of nets in E, we can state (2.6) in terms of nets.

Proposition 2.12. Let E be σ -complete. Then for $A \subseteq E^c$ the following are equivalent:

- (1) A is equicontinuous on E.
- (2) A is equi-\sigma-continuous on E.
- (3) A is equi-l'-continuous on E.

Proof. From Definition (2.1) it is clear that (1) implies (2). Note that $A \subset E^c \subset E^{\sigma c}$; thus, by (2.6), (2) is equivalent to (3). That (3) implies (1) follows by an argument similar to the proof of (2.6).

Proposition 2.13. Let E be σ -complete. Then for $A \subset E^c$, the following are equivalent:

- (1) A is equicontinuous on E.
- (2) $x_a \downarrow 0$ in E implies $\lim_a ||x_a||_A \circ = 0$.

A characterization of vague compactness in E^c was first given for a special case by Nakano [9, § 28]. The general case for σ -complete spaces was proved by Kaplan [8, (3.4)]. We obtain this result as a corollary of (2.8) by considering E^c as a sublattice of $E^{\sigma c}$.

Corollary 2.14. If E is σ -complete, then for $A \subset E^c$ the following are equivalent:

- (1) A is equicontinuous on E.
- (2) A is relatively $w(E^c, E)$ -compact in E^c .

We now give a characterization of $w(E^c, E)$ -compactness which is most simply stated for a solid set. Later we will be able to extend this result to E^{σ_c} and also obtain a partial extension to E^b .

Proposition 2.15. If E is σ -complete, then for a solid set A in E^c the following are equivalent:

- (1) A is relatively $w(E^c, E)$ -compact.
- (2) (a) A is $|w|(E^c, E)$ -bounded, and (b) every countable set $\{y_n\}$ of mutually disjoint elements of A converges to 0 in $|w|(E^c, E)$.

Proof. (1) \Rightarrow (2) (a) above follows from (2.2). Suppose (b) does not hold, then there exist $\epsilon > 0$ and $x \in E^+$ and a countable set $\{y_n\}$ of mutually disjoint elements of A such that $\langle x, |y_n| \rangle > \epsilon$.

Since A is solid, take $\{y_n\}$ positive. Let I_n be the closed ideal in E^c generated by y_n and $J_n = (I_n^\perp)'$ the dual ideal in E. By Luxemburg and Zaanen [8, (3.3)] J_n is a band in E. Let z_n be the component of x in J_n .

Since y_n 's are mutually disjoint, the z_n 's are also mutually disjoint and order bounded by x. Thus $\{z_n\}$ is an l'-sequence in E. But for every n we have $\|z_n\|_A \circ \geq \langle z_n, y_n \rangle = \langle x, y_n \rangle \geq \epsilon$, and hence a contradiction.

(2) \Rightarrow (1) We will show (2) of (2.11) holds. Suppose not. Then there exist $\epsilon > 0$, $\{x_n\}$ bounded mutually disjoint positive elements of E, and $\{y_n\} \subset A$, $y_n \geq 0$ such that $\langle x_n, y_n \rangle \geq \epsilon$ for all n.

Let J_n be the closed ideal in E generated by x_n . Then $I_n = (J_n^{\perp})'$ in E^c is a band, so let z_n be the component of y_n in I_n .

Then $z_n \ge 0$ and $z_n \in A$ since A is solid. There exist $x \ge x_n$ for all n; then $\langle x, z_n \rangle \ge \langle x_n, z_n \rangle = \langle x_n, y_n \rangle \ge \epsilon$. But z_n 's are mutually disjoint, since the x_n 's are, hence by (2) above $\lim_n \langle x, z_n \rangle = 0$, and again we have a contradiction.

3. Compactness in E^b . We now consider the question of characterizing compactness in E^b in terms of equi-l'-continuity. But first we need to prove some results which give a deeper relationship between equi-l'-continuity and the order structure on both E and E^b .

Each element s in E^b generates a closed ideal S which is a band in E^b . So $E^b = S \oplus S'$. Hence there is a canonical projection of E^b onto S. We will denote the image of a subset A of E^b under this projection by A_c .

The idea for the next proposition essentially comes from a construction, in a measure space, used by Ando [1]. When translated to a vector lattice, it has the surprising property of being equivalent to equi-1'-continuity. The importance of Proposition (3.1) is that it allows us to take any order bounded sequence in E and, in some sense, $\|\cdot\|_{A}$ o-approximate it by a bounded monotone sequence.

Proposition 3.1. Given a solid set A in E^b , the following are equivalent:

- (1) A is equi-l'-continuous on E.
- (2) For each order bounded sequence $\{x_n\}$ in E and $\epsilon > 0$, there exist two sequences $\{y_n\}$ and $\{z_n\}$ such that
 - (a) $y_n = x_n \lor x_{n+1} \lor \cdots \lor x_{j(n)}$ and $z_n = \bigwedge_{i=1}^n y_k$ where $j(n+1) \ge j(n) \ge n$,
 - (b) $\|\mathbf{y}_n \mathbf{z}_n\|_{A} \circ < \epsilon$.

Proof. (1) \Rightarrow (2) The sequence $x_{n,k} = \bigvee_{i=n}^{k} x_i$ $(k \ge n)$ is a bounded monotone sequence for each fixed n. By (3) of (2.4) there exists a sequence of positive

integers j(n) with $j(n+1) \ge j(n) \ge n$ and $\|x_{n,k} - x_{n,j(n)}\|_{A^{\circ}} < \epsilon/2^n$ for all $k \ge j(n)$. Set $y_n = x_{n,j(n)}$ and $z_n = \bigwedge_{i=1}^n y_k$. Then

$$0 \le y_n - z_n = \left(y_n - \bigwedge_{1}^{n} y_k \right) \le \sum_{k=1}^{n-1} (y_{k+1} - y_{k+1} \wedge y_k).$$

It follows since A is solid that

$$\|y_n - z_n\|_{A^{\circ}} \le \sum_{k=1}^{n-1} \|y_{k+1} - y_{k+1} \wedge y_k\|_{A^{\circ}}.$$

Now for any two elements of a vector lattice the following hold: $y_{k+1} - y_{k+1} \wedge y_k = y_{k+1} \vee y_k - y_k$, so $y_{k+1} - y_{k+1} \wedge y_k = x_{k,j(k+1)} - x_{k,j(k)}$. Thus

$$\|y_n - z_n\|_{A^{\circ}} \le \sum_{k=1}^{n-1} \|x_{k, j(k+1)} - x_{k, j(k)}\|_{A^{\circ}} \le \epsilon.$$

(2) \Rightarrow (1) Let $\{x_n\}$ be a bounded monotone increasing sequence in E and $\epsilon > 0$. Apply (1) above to $\{x_n\}$ and ϵ , getting $y_n = x_n \lor x_{n+1} \lor \cdots \lor x_{j(n)} = x_{j(n)}$ and $z_n = \bigwedge_{k=1}^n y_k = x_{j(1)}$ such that $\|y_n - z_n\|_A \circ \langle \epsilon/2$.

Since A is solid, we have for $n, m \ge j(1)$

$$\|x_n - x_m\|_{A_0} \le \|x_n - x_{i(1)}\|_{A_0} + \|x_m - x_{i(1)}\|_{A_0},$$

$$\|x_n - x_m\|_{A^0} \le \|x_{i(n)} - x_{i(1)}\|_{A^0} + \|x_{i(m)} - x_{n(1)}\|_{A^0} \le 2\epsilon.$$

Thus by (2.4) A is equi-l'-continuous on E; and the proof is complete.

Consider $s \in E^b$, $s \ge 0$. For simplicity we will denote the seminorm $\|\cdot\|_{[-s,s]^0}$ on E by $\|\cdot\|_s$. It is easy to show that $\|x\|_s = \langle |x|, s \rangle$ for all $x \in E$. Also, consider any z in the closed ideal S generated by s in E^b . It is then easy to show that if $\{x_n\}$ is order bounded and if $\lim_n \|x_n\|_s = 0$, then $\lim_n \|x_n\|_s = 0$. Thus any element z of S is $\|\cdot\|_s$ -continuous on each interval of E. We now give one of the main results of this section.

Theorem 3.2. Let A be a subset of E^b , the following are equivalent:

- (1) A is equi-l'-continuous on E.
- (2) (a) A is $|w|(E^b, E)$ -bounded, and (b) for each $s \in E^b$, A_s is equi-l'-continuous on E.
- (3) (a) A is $|w|(E^b, E)$ -bounded, and (b) for each $s \in E^b$, A_s is $||.||_s$ -equicontinuous on each interval of E.
- (4) For each $x \in E$ and $\epsilon > 0$, there exist $\delta > 0$ and a finite set $\{z_i\}_1^n \subset A$ such that: if $|y| \le |x|$ and $||y||_{z_i} < \delta$, $i = 1, \dots, n$, then $||y||_A \circ < \epsilon$.
- (5) For each $x \in E$, there exists z in E^b such that: A is $\|\cdot\|_z$ -equicontinuous on the interval [-x, x].
- (6) If $\{x_n\}$ is order bounded and $|w|(E, E^b)$ -convergent to 0, then $\lim_n ||x_n||_{A^0} = 0$.

Proof. (1) \Rightarrow (2) We may assume that A is solid; then $A_s \subset A$. Thus A_s must also be equi-1'-continuous on E.

(2) \Rightarrow (3) By (2.3) we may assume A_s is solid. Suppose (3) does not hold, then there exist $\epsilon > 0$, $s \ge 0$ in E^b and an order bounded sequence $\{x_n\} \subset E$ such that: $\|x_n\|_s < 1/2^n$ and $\|x_n\|_{A_s^0} > 2\epsilon$.

Since A_s is solid, we may take $x_n \ge 0$. A_s is equi-l'-continuous on E, hence by (3.1) there exist $y_n = x_n \lor x_{n+1} \lor \cdots \lor x_{j(n)}$ and $z_n = \bigwedge_{1}^{n} y_k$ such that $\|y_n - z_n\|_{A_s^{\circ}} < \epsilon$. Note that $y_n \ge 0$, $z_n \ge 0$ and $\{z_n\}$ is a bounded monotone decreasing sequence.

$$\|z_n\|_s = \langle z_n, s \rangle \le \langle y_n, s \rangle \le \sum_{k=n}^{j(n)} \langle x_k, s \rangle \le 1/2^{n-1}.$$

Thus $\lim_n \|z_n\|_s = 0$. But each element of A_s is $\|\cdot\|_s$ -continuous on the order bounded set $\{z_n\}$, thus $\lim_n \langle z_n, w \rangle = 0$ for each $w \in A_s$. Note that $\|z_n\|_{A_s^\circ} \ge \|y_n\|_{A_s^\circ} - \|y_n - z_n\|_{A_s^\circ} \ge \epsilon$.

By (2.4) there exist k such that $||z_n - z_m||_{A_s^\circ} < \epsilon/3$, for $n, m \ge k$. Fix $n \ge k$ and choose w in A_s such that $||z_n||_{A_s^\circ} \le \langle z_n, w \rangle + \epsilon/3$. Then

$$\|z_n\|_{A_s^{\circ}} \leq \|z_n - z_m\|_{A_s^{\circ}} + \langle z_m, w \rangle + \epsilon/3 \leq 2\epsilon/3 + \langle z_m, w \rangle.$$

But $\lim_{m} \langle z_m, w \rangle = 0$, hence $||z_n||_{A_s^{\circ}} < \epsilon$ and we have a contradiction.

(3) \Longrightarrow (4) Suppose (4) does not hold, then there exist $x \in E$, $\epsilon > 0$, and sequences $|x_n| \le x$, $\{z_n\} \subset A$ such that

$$\langle |x_n|, |z_k| \rangle < 1/2^n$$
 for $1 \le k \le n$ and $|\langle x_n, z_{n+1} \rangle| > \epsilon$.

A is $|w|(E^b, E)$ -bounded, so $z = \sum_{k=1}^{\infty} |z_k|/2^k$ exists in E^b . Then $\lim_n \|x_n\|_x = 0$, and hence by (3) $\lim_n \|x_n\|_{A_x^o} = 0$. Now $\{z_n\}$ is contained in the ideal generated by z, thus $\{z_n\} \subset A_z$. Hence $\|x_n\|_{A_x^o} \geq \|\langle x_n, z_{n+1} \rangle\| \geq \epsilon$, which again gives a contradiction.

(4) \Longrightarrow (5) Let $x \in E$. Let $\epsilon_n = 1/n$, so by (4) there exist $\delta_n > 0$ and a finite set $B_n \subseteq A$ such that

If $|y| \le |x|$ and $||y||_x < \delta_n$ for all z in B_n , then $||y||_A \circ < 1/n$.

Let $B = \bigcup_{1}^{\infty} B_n$, so B is a countable subset of A, denote B by $\{z_n\}$ where the z_n 's are elements of A. A is $|w|(E^b, E)$ -bounded, hence $z = \sum_{1}^{\infty} |z_n|/2^n$ exist in E^b . It then follows that A is $\|\cdot\|_z$ -equicontinuous on [-x, x].

- (5) \Rightarrow (6) Let $\{x_n\}$ be order bounded by x and $|w|(E, E^b)$ -convergent to 0.
- By (5) choose z such that A is $\|\cdot\|_z$ -equicontinuous on [-x, x]. But $\lim_n \|x_n\|_z = 0$, so $\lim_n \|x_n\|_A = 0$, and hence (6) holds.
- (6) \Rightarrow (1) Let $\{x_n\}$ be an l'-sequence in E, then note that $\{x_n\}$ is $|w|(E, E^b)$ -convergent to 0. Thus by (6) $\lim ||x_n||_{A^0} = 0$, so A is equi-l'-continuous on E, and the proof is complete.

 I_E and $Ba^{1/2}$. Consider a vector lattice E and its bounded dual E^b . Then E^b is an order complete vector lattice and has an order continuous dual which we denote by $(E^b)^c$. Since we always take E^b separating on E, we have a canonical imbedding of E in $(E^b)^c$. This imbedding is, in fact, a vector lattice isomorphism of E with a linear sublattice of $(E^b)^c$ [6, (2.6)]. We will thus consider E as contained in $(E^b)^c$.

Consider two elements x, y in E; we point out that $x \vee y$ -in- $(E^b)^c$. However, the infinite sup or inf of elements in E may not agree with the sup or inf in $(E^b)^c$.

We will denote by I_E the ideal generated by E in $(E^b)^c$. Thus $E \subseteq I_E \subseteq (E^b)^c$ where $I_E = \{y \in (E^b)^c$: there exists x in E with $|y| \le |x|\}$. I_E considered as a vector lattice is Dedekind complete since $(E^b)^c$ is. Also, note that if $y = \bigvee y_a$ -in- I_E , then $y = \bigvee y_a$ -in- I_E , then $y = \bigvee y_a$ -in- I_E .

We now give (without proof) some known properties of I_E . Note that $E \subseteq I_E$, thus E has an order closure \overline{E} in the vector lattice I_E . As might be expected, \overline{E} is exactly I_E .

Proposition 3.3. $\overline{E} = l_E$.

Since I_E is a vector lattice, it has an order continuous dual $(I_E)^c$. We now explicitly state what this dual is.

Proposition 3.4. $(I_F)^c = E^b$.

Combining (3.3) and (3.4), we get the following:

Proposition 3.5. E is $|w|(I_E, E^b)$ -dense in I_E .

Let $Ba^{\frac{1}{1}}$ be the subspace of I_E generated by the elements of the form: $x = \bigvee x_n \cdot \text{in-} I_E$ where $\{x_n\} \subseteq E$. Then $E \subseteq Ba^{\frac{1}{1}} \subseteq I_E$. Each element of $Ba^{\frac{1}{1}}$ can be written as (f-g) where f and g are each the sup in I_E of a countable subset of E. $Ba^{\frac{1}{1}}$ is a subspace of I_E , and it is easy to show that, in fact, $Ba^{\frac{1}{1}}$ is a linear sublattice of I_E . Also, $Ba^{\frac{1}{1}}$ is not σ -complete, but it has the property that if $\{x_n\}$ is an order bounded sequence of E, then $\bigvee x_n$ is an element of $Ba^{\frac{1}{1}}$. It is exactly this property that makes $Ba^{\frac{1}{1}}$ such an important sublattice of I_E . Also, note that if $\{x_n\}$ is an I'-sequence of E, then $\{\sum_{1}^{n} |x_n|\}$ is an order bounded sequence in I_E . Therefore, the order sum $x = \sum_{1}^{\infty} |x_k| = \sup_n (\sum_{1}^{n} |x_k|)$ is an element of $Ba^{\frac{1}{1}}$.

Remark. It can be shown that $(Ba^{1/2})^{\sigma_C} = E^b$ by modifying the proofs of (9.3) and (9.6) in [8].

Let E = C(X) be the space of continuous functions on a compact set X. Then the $Ba^{\frac{1}{2}}$ associated with C(X) is a subspace of the first Baire class Ba^{1} , hence the use of the notation $Ba^{\frac{1}{2}}$.

Since E is contained in I_E , each l'-sequence in E is also an l'-sequence in I_E , but I_E has many more l'-sequences than those contained in E. Surprisingly, if $A \subset E^b$ is equi-l'-continuous on E, then A is equi-l'-continuous on $\overline{E} = I_E$.

Proposition 3.6. $A \subseteq E^b$; then the following are equivalent:

- (1) A is equi-l'-continuous on E.
- (2) A is equi-l'-continuous on I F.

Proof. (1) \Rightarrow (2) We will show that (5) of (3.2) holds for the spaces I_E and $(I_E)^c = E^b$. Consider an interval $[-x_0, x_0]$ -in- I_E . Choose x in E such that $|x_0| \leq x$. By (3.2) there exists an element z in E^b such that A is $|| \cdot ||_x$ -equicontinuous on the interval [-x, x]-in-E. It follows from (3.5) that the interval [-x, x]-in-E is $|w|(I_E, E^b)$ -dense in the interval [-x, x]-in- I_E . It then can be shown (from the denseness) that A is $|| \cdot ||_x$ -equicontinuous on [-x, x]-in- I_E .

(2) \Rightarrow (1) Since $E \subseteq I_E$, (1) must hold and the proof is complete. Combining (3.6) with (2.12) applied to the spaces I_E and $(I_E)^c = E^b$, we have

Corollary 3.7. Let $A \subset E^b$; then the following are equivalent:

- (1) A is equi-l'-continuous on E.
- (2) A is equicontinuous on I_F.

We will now complete the task of characterizing compactness in E^b in terms of equi-l'-continuity. The following is the main result on this.

Theorem 3.8. Let $A \subseteq E^b$; then the following are equivalent:

- (1) A is equi-l'-continuous on E.
- (2) A is relatively $w(E^b, I_F)$ -compact.
- (3) A is relatively $w(E^b, Ba^{1/2})$ -compact.

Proof. (1) \Rightarrow (2) By (3.7) A is equicontinuous on I_E . Note that I_E is a Dedekind complete vector lattice and $(I_E)^c = E^b$. By applying (2.14) to the spaces I_E and $(I_E)^c$, it follows that A is relatively $w(E^b, I_E)$ -compact.

- (2) \Rightarrow (3) The topology $w(E^b, I_E)$ is finer than $w(E^b, Ba^{1/2})$, thus (3) must hold.
- (3) \Rightarrow (1) By an argument similar to (2.8) we find an l'-squence $\{x_n\}$ in E and $\{y_n\} \subset A$ such that $|\langle v, y_n \rangle| \ge \epsilon$ and $\langle v, y_0 \rangle = 0$ where $v = \sup_m (\sum_{1}^m x_n)$ -in- l_E and y_0 is a $w(E^b, Ba^{\frac{1}{2}})$ accumulation point. Since $v \in Ba^{\frac{1}{2}}$, we have a contradiction of y_0 being a $w(E^b, Ba^{\frac{1}{2}})$ accumulation point of $\{y_n\}$ and the proof is complete.

We now give the promised extensions of Proposition (2.15).

Corollary 3.9. Let A be a solid set in E^b , then the following are equivalent: (1) A is equi-1'-continuous on E.

(2) (a) A is $|w|(E^b, E)$ -bounded, and (b) every countable set $\{y_n\}$ of mutually disjoint elements of A converges to 0 in $|w|(E^b, E)$.

Proof. Note that $E^b = (I_E)^c$, then by (2.17), (2) above is equivalent to A being relatively $w(E^b, I_E)$ -compact, and by (3.7) this is equivalent to A being equi-I'-continuous on E; and the proof is complete.

Combining (3.9) with (2.8) gives

Corollary 3.10. Let E be σ -complete and A a solid set in E^{σ_c} , then the following are equivalent:

- (1) A is relatively $w(E^{\sigma_c}, E)$ -compact.
- (2) (a) A is $|w|(E^{\sigma_c}, E)$ -bounded, and (b) every countable set $\{y_n\}$ of mutually disjoint elements of A converge to 0 in $|w|(E^{\sigma_c}, E)$.

Remark. For $x \in E$, let E_x denote the ideal generated by x in E. Then E_x is the set of all elements y in E such that $|y| \le a|x|$ for some a > 0.

Let l_x denote the ideal generated by x in l_E . Then l_x is the set of all $y \in l_E$ such that $|y| \le a|x|$ for some a > 0. Thus $E_x \subseteq l_x$.

Now E_x is a norm space where the norm is given by $||y|| = \inf \{a \ge 0$: $|y| \le a|x| \}$ for each y in E_x . Let E_x' and E_x'' denote the first and second dual of the norm space $(E_{x'}, ||\cdot||)$. Note that E_x' is a Banach space, and, in fact, the norm is given by $||x|| = \langle |x|, |z| \rangle$ for each z in E_x' . Also, the norm on E_x'' is given by $||y|| = \inf \{a \ge 0 : |y| \le a|x| \}$ for each y in E_x'' . In fact, it can be shown [6, (4.1)] that $E_x' = (E_x)^b$ and $E_x'' = (E_x')^c$. It follows that the ideal generated by E_x in E_x'' is exactly E_x'' . Thus for this case (3.8) becomes a statement about weak compactness in E_x' . For clarity, we state it here.

Proposition 3.11. Let $A \subseteq E_x'$, then the following are equivalent:

- (1) A is equi-l'-continuous on E.
- (2) A is relatively weakly compact.

We now show that equi-l'-continuity is closely related to sequential compactness.

Theorem 3.12. Let $A \subseteq E^b$, then the following are equivalent:

- (1) A is equi-l'-continuous on E.
- (2) For each x in E and sequence $\{y_n\} \subset A$, there exist y in E^b and a subsequence of $\{y_n\}$ which converges pointwise to y on the interval [-x, x]-in- I_{E^b}

Proof. (1) \Rightarrow (2) Let $x \in E$ and $\{y_n\} \subset A$. Consider E_x and let $T: E_x \to E$ be the identity map. Then it follows that $T^t: E^b \to E_x'$ and $T^{tt}: E_x'' \to I_x$.

Since A is equi-l'-continuous on E, it follows easily that $T^t(A)$ is equi-l'-continuous on E_x . Thus by (3.11) $T^t(A)$ is relatively $w(E_x', E_x'')$ -compact. Hence by Eberlein's theorem [2, p. 430], there exists a subsequence $\{T^t(y_{n_k})\}$

converging weakly to an element z of E_x .

Now $\{y_{n_k}\}$ is equi-l'-continuous on E, and thus by (3.8), is relatively $w(E^b, I_E)$ -compact; hence has a $w(E^b, I_E)$ -accumulation point y in E^b .

Since $T^t : E^b \to E_x'$ is continuous with respect to $w(E^b, I_E)$ and $w(E_x', E_x'')$, it follows that $T^t(y)$ is a $w(E_x', E_x'')$ accumulation point of $\{T^t(y_{n_k})\}$, and hence $\{T^t(y_{n_k})\}$ converges weakly to $T^t(y)$.

Let $s \in [-x, x]$ -in- l_E . It can be shown that T^{tt} maps E_x'' onto l_x . Thus there exists r in E_x'' such that $T^{tt}(r) = s$. Thus

$$\langle s, y \rangle = \langle r, T^{t}(y) \rangle = \lim_{k} \langle r, T^{t}(y_{n_{k}}) \rangle = \lim_{k} \langle s, y_{n_{k}} \rangle$$

for each s in [-x, x]-in- I_E .

(2) \Rightarrow (1) Suppose A is not equi-l'-continuous on E, then there exist $\epsilon > 0$, an l'-sequence $\{x_n\}$ in E, and $\{y_n\} \subset A$ such that $|\langle x_n, y_n \rangle| > \epsilon$ for all n. Since $\{x_n\}$ is an l'-sequence, there exists an x in E such that $\sum_{n=1}^{\infty} |x_n| \leq x$ for all n.

By (2) above choose a subsequence $\{y_{n_k}\}$ converging pointwise on [-x, x]-in- I_E to some y in E^b . Let $T: I_x \to I_E$ be the identity map, then it follows that $T^t: (I_E)^c \to (I_x)^c$. But $(I_E)^c = E^b$, so $T^t: E^b \to (I_x)^c$. It is clear that $\{T^t(y_{n_k})\}$ converges to $T^t(y)$ pointwise on I_x . It then follows from (2.14) that it is equicontinuous on I_x . So for k large $|\langle x_{n_k}, T^t(y_{n_k})\rangle| < \epsilon$. But $|\langle x_{n_k}, T^t(y_{n_k})\rangle| = |\langle T(x_{n_k}), y_{n_k}\rangle| = |\langle x_{n_k}, y_{n_k}\rangle| \ge \epsilon$, hence a contradiction; and this completes the proof.

Consider x in E, and E_x the ideal generated by x in E. Then E_x^{\perp} is a closed ideal in E^b , hence a band, so $E^b = E_x^{\perp} \oplus (E_x^{\perp})'$. Each y in E^b has a component in $(E_x^{\perp})'$, we will denote this component by $(y)_x$ (an abuse of notation). Thus each element x in E determines a projection on E^b . Then equi-l'-continuity on E can be stated in terms of these projections and relatively $w(E^b, I_E)$ -sequential compactness.

Proposition 3.13. Let $A \subset E^b$, then the following are equivalent:

- (1) A is equi-l'-continuous on E.
- (2) A_x is relatively $w(E^b, I_E)$ -sequentially compact for each x in E.

Proof. (1) \Rightarrow (2) Consider x in E and $\{y_n\} \subseteq A$. By (3.12) there exists a subsequence $\{y_{nk}\}$ converging pointwise on [-x, x]-in- I_E to some y in E^b .

Now consider the ideal I_x in I_E , so the order closure \overline{I}_x is a band in I_E , thus $I_E = \overline{I}_x \oplus (\overline{I}_x)'$. Since $I_x = \bigcup_{n=1}^{\infty} n [-x, x]$, it follows that $\{y_{n_k}\}$ converges pointwise on I_x to y. I claim that $\{y_{n_k}\}$ converges pointwise on \overline{I}_x . Let $z \in \overline{I}_x$, then there exists a net $\{z_a\} \subset I_x$ such that $z_a \to z$ in I_E . Then $z_a \to z$ uniformly on $\{y_{n_k}\}$ since by (3.7) $\{y_{n_k}\}$ is equicontinuous on I_E . From the uniform convergence, it follows that $\lim_k \langle z, y_{n_k} \rangle = \langle z, y \rangle$. Therefore, $\{y_{n_k}\}$

converges pointwise on \overline{I}_x to y. Since $E^b = E_x^{\perp} \oplus (E_x^{\perp})'$, $I_E = \overline{I}_x \oplus \overline{I}_x'$, and $E_x^{\perp} = I_x^{\perp} = (\overline{I}_x)^{\perp}$; it follows that $\{(y_{n_k})_x\}$ converges to $(y)_x$ in $w(E^b, I_E)$.

(2) \Rightarrow (1) Suppose (1) does not hold, then there exist $\epsilon > 0$, l'-sequence $\{x_n\}$ in E, and $\{y_n\} \subset A$ such that $|\langle x_n, y_n \rangle| > \epsilon$ for all n. Choose an element x in E such that $\sum_{i=1}^{n} |x_i| \le x$ for all n. By (2) above there exists a subsequence $\{(y_{n_k})_x\}$ converging in $w(E^b, I_E)$ to some element y in E^b . Note that $(x_n)_x = x_n$ since the x_n 's are in the ideal I_x . Thus $|\langle x_n, (y_n)_x \rangle| = |\langle (x_n)_x, y_n \rangle| = |\langle x_n, y_n \rangle| > \epsilon$. Since $\{(y_{n_k})_x\}$ converges in $w(E^b, I_E)$, it follows from (3.8) that it is equi-l'-continuous on E, which contradicts $|\langle (x_{n_k}, (y_{n_k})_x) | > \epsilon$.

Note that by (3.8) every $w(E^b, Ba^{\frac{1}{2}})$ convergent sequence in E^b must be equi-l'-continuous on E and also converge in $w(E^b, I_E)$. In (3.12) and (3.13) the equi-l'-continuity of a convergent sequence was the critical fact in their proofs. Thus they could be restated in terms of $w(E^b, Ba^{\frac{1}{2}})$ convergent sequences.

4. Convergent sequences in E^b . As usual, l^∞ , l', and c_0 denote the real space of bounded sequences, absolutely summable sequences, and sequences converging to 0 respectively, each with its usual norm and order. Then $l^\infty = (\text{norm dual of } l') = (l')^c$ and $l' = (l^\infty)^c$, thus each space is the other's order continuous dual. Also $(l^\infty)^b = (\text{norm dual of } l^\infty)$. Since $l' = (l^\infty)^c$, l' is a band in $(l^\infty)^b$; hence each element y in $(l^\infty)^b$ has a component $(y)_{l'}$ in l', in fact, $(l^\infty)^b = l' \oplus c_0^\perp$. We will make use of the following theorem due to Phillips [2, p. 296].

Proposition 4.1. If a sequence $\{y_n\}$ in $(l^{\infty})^b$ is $w[(l^{\infty})^b, l^{\infty}]$ convergent to 0, then $\{(y_n)_{j'}\}$ is norm-convergent to 0.

We will apply (4.1) to σ -complete vector lattices by the following technique used by Kaplan [8, (3.2)].

Proposition 4.2. Let E be σ -complete and $\{x_n\}$ an l-sequence in E, then there exists a positive linear mapping $F: l^{\infty} \to E$ satisfying $F(e_n) = |x_n|$ for all n, where e_n is the element of l^{∞} with the nth coordinate 1 and the remaining coordinates 0.

This section will be devoted to extending the results of §3 to $w(E^b, E)$ convergent sequences of E^b . Note that §3 restricted itself to the topologies $w(E^b, Ba^{\frac{1}{2}})$ and $w(E^b, I_E)$ on E^b . The main tool will be the deep result (4.3)
that $w(E^b, E)$ -convergent sequences are equi-l-continuous on E, when E is σ -complete.

Theorem 4.3. Let E be σ -complete, then every $w(E^b, E)$ -Cauchy sequence in E^b is equi-1*-continuous on E.

Proof. Let $\{y_n\}$ be $w(E^b, E)$ -Cauchy. Suppose $A = \{y_n\}$ is not equi-l'-contin-

uous on E, then there exist $\epsilon > 0$ and a positive l'-sequence $\{x_k\}$ in E such that $\|x_k\|_A \circ > \epsilon$. Choose a subsequence $\{y_{n_k}\}$ such that $\|\langle x_k, y_{n_k} \rangle| > \epsilon$. For simplicity of notation, let the original sequences have this property: $|\langle x_n, y_n \rangle| > \epsilon$.

Applying (4.2) there exists a positive linear mapping $F: l^{\infty} \to E$ such that $F(e_n) = x_n$. Then $F^t: E^b \to (l^{\infty})^b$ is continuous with respect to the topologies $w(E^b, E)$ and $w[(l^{\infty})^b, l^{\infty}]$. It follows that $\{F^t(y_n)\}$ is $w[(l^{\infty})^b, l^{\infty}]$ -Cauchy, and hence converges to an element z of $(l^{\infty})^b$. Therefore, by (4.1) $\lim_n \|(F^t(y_n) - z)_l\| = 0$. Thus for n sufficiently large $\|(F^t(y_n) - z)_{l'}\| < \epsilon/2$, hence $\|(e_n, F^t(y_n) - (z)_{l'})\| \le \epsilon/2$, so $\|(e_n, F^t(y_n))\| \le \epsilon/2 + \|(e_n, (z)_{l'})\|$ for n large enough. Note that $\{e_n\}$ converges to 0 in $w(l^{\infty}, l')$, thus $\lim_n \|(e_n, (z)_{l'})\| = 0$. Therefore, $\|(e_n, F^t(y_n))\| < \epsilon$ for n sufficiently large. But $\|(e_n, F^t(y_n))\| = \|(F(e_n), y_n)\| = \|(x_n, y_n)\| \ge \epsilon$, hence a contradiction; and the proof is complete.

Corollary 4.4. If E is σ -complete, then E^b is $w(E^b, E)$ -sequentially complete.

Combining (3.8) with (4.3) gives the following result due to Schaefer [11]:

Corollary 4.5. Let E be σ -complete. If a sequence $\{y_n\}$ in E^b converges in the topology $w(E^b, E)$; then it converges in the topology $w(E^b, I_E)$.

For E σ -complete, (3.12) can be strengthened from a statement about intervals of I_E to one considering only the intervals of E.

Proposition 4.6. If E is σ -complete and $A \subseteq E^b$, then the following are equivalent:

- (1) A is equi-l'-continuous on E.
- (2) For each x in E and sequence $\{y_n\} \subset A$, there exist y in E^b and a subsequence of $\{y_n\}$ which converges pointwise to y on the interval [-x, x]-in-E.

Proof. By (3.12), (1) implies (2). Now assume (2) holds. Suppose A is not equi-l'-continuous on E. Then there exist $\epsilon > 0$, l'-sequence $\{x_n\}$ in E, and $\{y_n\} \subset A$ such that $\{(x_n, y_n)\} > \epsilon$.

Choose an element x in E such that $\sum_{1}^{n}|x_{k}| \leq x$ for all n. By (2) above there exists a subsequence $\{y_{n_{k}}\}$ converging to an element y in E^{b} on the interval [-x, x]-in-E.

Consider the identity map $T: E_x \to E$ and $T^t: E^b \to E_x'$, then $T^t(y_{n_k})$ converges to $T^t(y)$ in $w(E_x', E_x)$. Note that $E_x' = (E_x)^b$. Applying (4.3) to the spaces E_x and E_x^b , it follows that $T^t(y_{n_k})$ is equi-l'-continuous on E_x . But $|\langle x_{n_k}, T^t(y_{n_k}) \rangle| = |\langle x_{n_k}, y_{n_k} \rangle| \ge \epsilon$, and $\{x_{n_k}\}$ is an l'-sequence in E_x , hence a contradiction; and this completes the proof.

For E σ -complete, we get the following strengthening of (3.13) by applying (4.5). This points out the close relationship between vague sequential compactness and equi-l'-continuity.

Proposition 4.7. If E is σ -complete and $A \subset E^b$, then the following are equivalent:

- (1) A is equi-l'-continuous on E.
- (2) A_{x} is relatively $w(E^{b}, E)$ -sequentially compact for each x in E.

As stated earlier, each element w in E^b generates a closed ideal in E^b , and hence determines a projection on E^b , denoted by $(y)_m$ for y in E^b .

This projection is determined purely by the order structure on E^b ; however, there is a relationship between this and vaguely convergent sequences.

Proposition 4.8. Let E be σ -complete. If $\{y_n\}$ converges to y in $w(E^b, E)$ and $0 \le w_n \upharpoonright w_0$ in E^b then $\{(y_n)_{w_n}\}$ converges to $(y)_{w_0}$ in $w(E^b, E)$.

Proof. Consider l_E and $(l_E)^c = E^b$. Let l_n be the closed ideal generated by w_n in E^b and $J_n = (l_n^{\perp})^t$ the dual ideal in l_E . Then J_n is a band in l_E . For x in E, let x = (x), Note that (x, z) = (x, (z), y) for each z in E^b .

in E, let $x_n = (x)_{J_n}$. Note that $\langle x_n, z \rangle = \langle x, (z)_{w_n} \rangle$ for each z in E^b .

Since $w_n \upharpoonright w_0$ in E^b , it follows that $x_n \upharpoonright x_0 = (x)_{J_0}$ in I_E . From (4.3) it follows that $\{y_n\}$ is equicontinuous on I_E , thus $x_n \upharpoonright x_0$ uniformly on the y_n 's. Therefore, by the uniform convergence, it follows that

$$\langle x, (y)_{w_0} \rangle = \langle x_0, y \rangle = \lim_{n} \langle x_n, y_n \rangle = \lim_{n} \langle x, (y_n)_{w_n} \rangle$$

for each x in E. Hence $\{(y_n)_{w_n}\}$ converges to $(y)_{w_0}$ in $w(E^b, E)$.

Corollary 4.9. Let E be σ -complete. If $\{y_n\}$ converges to y in $w(E^b, E)$ then, for any closed ideal I in E^b , the projection $\{(y_n)_l\}$ converges to $(y)_l$ in $w(E^b, E)$.

Proof. Since $\{y_n\}$ is equi-l continuous on E, it follows that $\{|y_n|_l\}$ is $|w|(E^b, E)$ -bounded. Thus $z = \sum_{1}^{\infty} |y_n|_l / 2^n$ is an element of E^b and $(y_n)_z = (y_n)_l$. By (4.8) $\{(y_n)_z\}$ converges to $(y)_z$ in $w(E^b, E)$; and this completes the proof.

BIBLIOGRAPHY

- 1. T. Ando, Convergent sequences of finitely additive measures, Pacific J. Math. 11 (1961), 395-404. MR 25 #1255.
- 2. N. Dunford and J. T. Schwartz, Linear operators. I: General theory, Pure and Appl. Math., vol. 7, Interscience, New York, 1958. MR 22 #8302.
- 3. P. Ganssler, Compactness and sequential compactness in spaces of measures, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 17 (1971), 124-146. MR 44 #793.
- 4. A. Grothendieck, Sur les applications linéaires faiblement compactes d'espaces du type C(K), Canad. J. Math. 5 (1953), 129-173. MR 15, 438.
- 5. S. Kaplan, On the second dual of the space of continuous functions, Trans. Amer. Math. Soc. 86 (1957), 70-90. MR 19, 868.

- 6. S. Kaplan, The second dual of the space of continuous functions. II, Trans. Amer. Math. Soc. 93 (1959), 329-350. MR 22 #2888.
- 7. ———, Closure properties of C(X) in its second dual, Proc. Amer. Math. Soc. 17 (1966), 491–406. MR 32 #6260.
- 8. ———, On weak compactness in the space of Radon measures, J. Functional Analysis 5 (1970), 259–298. MR 41 #5932.
- 9. H. Nakano, Linear lattices, Wayne State Univ. Press, Detroit, Mich., 1966. MR 33 #3084.
- 10. A. L. Persessini, Ordered topological vector spaces, Harper & Row, New York, 1967.
- 11. H. H. Schaefer, Weak convergence of measures, Math. Ann. 193 (1971), 57-64. MR 44 #5759.

DEPARTMENT OF MATHEMATICAL SCIENCES, INDIANA UNIVERSITY-PURDUE UNIVERSITY, INDIANAPOLIS, INDIANA 46205