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WEAK COMPACTNESS IN THE ORDER DUAL OF A

VECTOR LATTICE

BY

OWEN BURKINSHAW

ABSTRACT.  A sequence  \x  \ in a vector lattice  E will be called an  / •

sequence if there exists an  x in  E such that ^%-, \xk,\ s x for all n.   Denote

the order dual of  E by  E .   For a set ACE, let  || ' fl^o denote the Minkowski

functional on   E defined by its polar A   in  £.   A set ACE    will be called

equi-i -continuous on  E if Um ||x  H^0^  for each  /-sequence  \x } in  E.

TTie main objective of this paper will be to characterize compactness in

E    in terms of the order structure on  E and  E .   In particular, the relationship

of equi-/ -continuity to compactness is studied.   §2 extends to   E   c the results

in Kaplan L8J on vague compactness in   E .   Then this is used to study vague

convergence of sequences in  E .

1.  Introduction.   The main objective of this paper will be to characterize

compactness in the order dual E    of a vector lattice E in terms of the order

structure on E,  §2 extends to Eac results in Kaplan [8] on vague compactness

in Ec.   Then §3 considers the order dual Ë    of a vector lattice, and Theorem

(3-8) characterizes compactness in Eb in terms of the order structure.   These re-

sults are then used in §4 to extend those in Schaefer [ll] on vaguely convergent

sequences.   We now give the basic properties of a vector lattice that will be needed.

Throughout this paper, we will always assume that a vector lattice E is

archimedean.   A set in E will be called order bounded if it is contained in some

interval [x, y] = \z £ E: x < z < y}.   A subset A  of E will be called solid if it

has the property: x e A,   \y\ < \x\ implies y £ A.   The solid envelope oí A is the

smallest solid set containing A.   In fact, the solid envelope of A  is the set

\JxeA[-\x\,\x\l

A vector lattice E will be called complete ii the sup \M and inf AA  of

every order bounded set A exist.  E will be called o-complete if the sup and inf

of every countable order bounded set exist.

A net íxa¡ in E is ascending (respectively descending) if for every pair of

indices,  a < ß implies xa < xß (respectively xa > xß).   The notation xa T x

means that xa is ascending and x = Vxa; similarly for xa i x.   A net (xa¡ is
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said to order converge to x if there exists a net lyai such that ya I 0 and

\xa - x\ < y a for all cl.   We will denote order convergence by xa —» x.    A subset

A  of E will be called order closed if for every net jxa j in A, xa —» x implies

that x £ A.   Given any set A, the smallest order closed set containing A will be

called the order closure of A,  and denotes by A.

An ideal 1 of £ is a linear subspace with the property that a £ ¡,   \b\ < \a\

implies b £ I.   If an ideal / has a complementary ideal /, that is E =1 ©/, then

/ will be called a band.   It follows that there is a canonical projection of E onto

/.   We will denote the image of a set A  under this projection by Af: Af = {xf: x e Aj.

This canonical projection preserves sup's and inf's: x = VA implies Xj =  VAj

and x = AA implies xf = AAf.

Two elements x, y of E are called disjoint if |x| A |y| =0. Given a set A

in E we will denote by A the set ¡x e E: \x\ A |y| = 0 for all y in A}. It can

be shown that A is a closed ideal and that (A ) is the closed ideal generated

by A.   It follows that if E = / ©/,   then / = / • Later we will need the following:

Theorem 1.1 (Riesz).   // E is complete, every closed ideal I is a band:

E = / © /'.

A real linear functional f on E will be called bounded if it is bounded on

every order bounded set of E.   The vector space of bounded linear functionals on

E will be called the bounded dual oí E and denoted by E .   Under the definition

/ 5 g if (*< /) 5 ix> g) f°r aH * in E    (the positive cone of E), E° is a complete

vector lattice.

A linear functional f on E will be called continuous if xa —, x in E implies

lima (xa, /)= (x, /).   We will denote the set of continuous linear functionals on

E by Ec.   A linear functional f on E will be called o-continuous if x   —» x in

E implies limn (xn, f)= (x, f), and the set of ff-continuous linear functionals on

E will be denoted by BCT<r.   Then EcCEacCEb,  and, in fact, Ec and Eac are

each a band in E °.

The weak topology on E defined by E° will be denoted by w(E, Eb).   In this

paper E° will always be taken separating on E, hence the weak topology

w(E, E ) is Hausdorff.   E    also defines a finer topology on E than the weak topology.

This topology is given by the family of seminorms || '||  , y running through Eb',

where ||x||   =(|x|, |y|) for each x in E.  We will denote it by \w\(E, Eb).  An

equivalent definition of this topology is that it is the topology given by the polars

in E of intervals of Eb.

In a similar manner,  |iü|(E°, E) is defined on E    by the family of seminorms

II " II x, where now x runs through E.   Also, E defines the vague (or weak )

topology on E°, denoted by w(E°, E).
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2. Compactness in E c and Ec.   A sequence ix  ! in a vector lattice E will

be called an / -sequence if there exists an element x in E such that 2" |x,| <x

fot all 72.   It is clear that if \xn\ is an / -sequence and \y  | < |x |, then [y  \ is

also an / -sequence.

Any / sequence {x^i converges to 0 in |ttf|(E, E ).   For there exists x in E

such that 2*1 |xj < x for all 72.   Now consider y £ Eb, then 2" (|*J, |y|> <

(x, |y|>, and thus limn(|xj, |y|)=0.

Given a subset A if E6 we will denote by || ' ||   o the Minkowski functional on
o

E defined by its polar A    in E.   Thus for each x in E we have ||x||   o =
A

suPyeA K*. y>l-

Consider the sublattices of Ec and Eac, Each element of Ec is continuous

with respect to order convergence of nets of E, and each element of E c is con-

tinuous with respect to order convergence of sequences of E; whereas, each ele-

ment of E is continuous with respect to convergence (always to 0, of course) of

/ -sequence of E.   The analogy of this for a set of linear functionals is the following.

Definition 2.1. 1. A subset A of Ec will be called equicontinuous on E if

lima ||x a||   o = 0 for each net xa —» 0 in E.

2.   A subset A of E c will be called equi-a-continuous on E if lim   ||x || o = 0
* 12 "  n'A

fot each sequence x   —» 0 in E.

3.  A subset A of E° will be calledequi-l''-continuous on E if lim   ||x ||  o=0
n "   n"A

fot each / -sequence ix } in E.

Equivalently, (2.1) says that A is equicontinuous on E if each order conver-

gent net in E converges uniformly on A ; A is equi-ff-continuous if each order

convergent sequence in E converges uniformly on A; and A is equi-/ continuous

if each / sequence converges to 0 uniformly on A.  We now give some basic

properties of equi-/-continuous subsets of E°.

Proposition 2.2.   Atz equi-l -continuous set A of linear functionals on E is

\w\(Eb, E)-bounded.

Proof.   Let x be an element of E and suppose sup  eA (|x| , |y|)= <».   For

each 72 choose yn in A such that (|x|, |y  |)> 2".  Now (|x|, |y  |) =

suP|i|s|x| K*' y«^' so choose \bn\ S 1*1 such that \(bn, yn)\ > 2", thus

\(b /2n, yn)\ > 1.   But Moj2n\ is an / -sequence in E, and we have a contradic-

tion since A  is equi-/ -continuous on E.

Proposition 2.3.  A subset A of E° is equi-l'-continuous on E if and only if

its (convex) solid envelope is equi-l -continuous on E,

Proof.   We need only consider the solid envelope 3 of A, since it is clear

that equi-/ -continuity is equivalent for a set and its convex envelope.

Suppose B  is not equi-/ -continuous, then there exists e > 0 and an / -sequence
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}x  Î such that ||x  |Lo> f.   Since jx  i is an / -sequence there is an element x of
72 "    7Í " B n *

E suchthat S" |x,| <x for all »».   Since  ||x  ||   o>f, choose iy  }CA suchthat

<h.l.b„l»*
By standard formula (|xj, |yj) = supUM* I l(&> y„)l» so choose  |¿J < |xj

such that |(è , y  )\ > c.   But \b  \ is also an / -sequence, and ||¿ |Lo>
n      77 77 » * "   n  A   —

\(bj yn)| > i.   Thus we have a contradiction of A  being equi-/'-continuous on E.

Remark.   To show that a subset A of E° is equi-/ -continuous on E, one

need only show that lim    ||x  ||   o = 0 for each positive I sequence of E.   This

follows since  llx  II   o < ||x II   n + ||x~|l   o and ix  i (respectively ix~i) is a
n  A    —      n  A 77 u A n r J       n

positive / -sequence   whenever ix  S is an / sequence of E.

Proposition 2.4. .Let A be a subset of E  ; the following are equivalent:

(1) A z's equi-l -continuous on E.

(2) Every bounded monotone net in E is  || ' \\   o-Cauchy.

(3) Every bounded monotone sequence in E is || • ||   o-Czzzzc¿y.
A

FVoof.   (1) => (2) Suppose (2) does not hold, then there exists a bounded  mono-

tone increasing net jxa| which is not || ■ ||   o-Cauchy.   Thus there exist ( > 0 and

ai S a2 S ' ' •  such that llxa  +, - *„   ILo > f.  Now ix„ Î is order bounded by

some element x on E, so S^j Uafc+1 -ïJ = Ua„+1 -»a,'^"^^   Thus

j(x_        — x„  )i is an / -sequence in E and we have a contradiction.
ak+l        ak

Of course, (2) implies (3).

(3) ■■♦ (1) Consider a positive /'-sequence  ix ! in E.   Set y   = S" xfe.   Then

\y  } is a bounded monotone increasing sequence of E.   Thus

4»l*JI¿o = Um lly„-y„. 1^0 = 0

and the proof is complete.

Contained in the above proof is the following useful observation:

Corollary 2.5.   A subset A of E° is equi-l -continuous on E if and only if

every countable subset of A is equi-l -continuous on E.

The main result (2.8) of this section is the characterization of vaguely compact

subsets of Eac in terms of the order structure on E, in particular, in terms of

equi-<7-continuity on E.

Proposition 2.6.   Let E be o-complete.   Then for A C Eac the following are

equivalent:

(1) A  z's equi-o-continuous on E.

(2) A z's equi-l -continuous on E.

Proof.   Since E  is ff-complete, it follows that x   —» 0 for any / -sequence

{x } in E.  Hence (1) implies (2).
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Assume (2) holds.   Note that we may take A  solid.   Let xn —» 0 in E, then

there exist y   1 0 such that Ix | < y .   Let e > 0.   By (2.4) choose k such that
' n n n

||yn -y   ||   o < e fot n, m > k.   Fix 72 (72 > k).   Since ll*JL° = supz€A \(xn, z)\,

choose z e A  such that ||x II .o < Kx^ z)| + e.   Then for m >k

KlUo < (yn' M>+ e < lb« - yJUo + Ow. M>+ « s <ym' M>+ 2i-

But lim   (y   , H) = 0, thus  ||x II ,o < le for n>k.   Hence lim   ||x II   o = 0 and
mSJ m    '   " ' "   n"A    ~ ~ n "   n"A

the proof is complete.

Proposition 2.7.   Let E be a-complete.   Then for A C E4* the following are

equivalent:

(1) A is equi-o-continuous on E.

(2) x   i 0 z« E zmô/zes lim   ||x ILo = 0.

Proof.   That (1) implies (2) follows from the definition of A being equi-cr-

continuous on E.   Assume (2) holds, and suppose A is not equi-cr-continuous on

E.   Then there exist e > 0 and a sequence xr —» 0 in E such that ||jc (|   o > t.

Since xn —» 0 in E, there exists a sequence \y  I in E with |x I <yn and

yn I 0.   Choose Zj  in A  such that |(x1# z / > e.   Since yn 1 0, (y   V Xj) ixj,

hence since Zj belongs to E°c, there exists 72 j such that |(y„ j V*;» z/\ > f•

There exists z2 in A  such that |(*ni> z2)| > e.   Since (y   V xnl)l xnl, there

exists 722 > 72 j such that |(y„2 V xnl, z2)\ > t.   Proceeding inductively we obtain

72j<722<723<... and \zk\ C A  satisfying |(y„A V *nfc_t» 2¿>l > f-   Set

wfc = y»ifc V x„k_ p theri ti;^ 1 0 and II^JLo > e.   Thus (2) fails to hold, and the

proof is complete.

For a a-complete vector lattice E, vague compactness in Eac is completely

characterized by equi-cr-continuity on E.

Theorem 2.8.   // E z's a-complete, then for A C Eac the following are

equivalent:

(1) A  is equi-o-continuous on E.

(2) A is relatively w(Eac, E)-compact in Eac.

Proof.   (1) -» (2) It follows from (2.2) that A is \w\iE°c, E)-bounded, hence

wiE c, E)-bounded.   Thus its vague closure B  in the algebraic dual E   of E is

wiE , E)-compact.   Thus one need only show that 3 C E°c.   This follows easily

from the fact that order convergent sequences of E must converge uniformly on A.

(2) ""* (1) Suppose A is not equi-a-continuous on E, then there exist f > 0

and a positive / -sequence \wk\ in E such that ||wfcILo > 2«.

Set £j = 1  and choose y,  in A  such that Kuz&j, y,)| > 2e.   Now

lim¿ («/fc, yj) = 0,  since iu^! is an / -sequence.   It follows that we can choose an
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772

integer k2 and an element y2 in A so that \(wk2, y i)l 5 e and Kzz^' y2)\ > 2«-

Proceeding inductively, we obtain sequences {"'¿-K iy_l <- ̂  such that

v yn>l >2f and K^n+i- ym)l ^6 for w ïkn- Hence l^*«» y72 ■>„>! ^f for

< 4 .   For simplicity of notation, let our original sequences have this property:

^wk- yk~ym)\> e for m <k-

Since íy, Î is relatively w{Eac, E)-compact it has a  wiEac, E)  accumulation

point y in E c.   By a diagonal method we can choose a subsequence {y¿ }

such that  lim   (w,, y^  ) = (w,, y ) for each k.

Set zn = (yk„ - ykn. j.) and xn = wkn.   Then we have that

W \(xn, zn )| > e    and    lim(xn, z,)=0    for each »».

We will construct an element v in E such that |(t/, 2n¿)l ^ £/3 for an infinite

subsequence »»,, where v = ^T=i xnu'

Suppose this construction is completed.   Since \znk\ is also relatively

wiE0^0, E)-compact, it has a w{Eac, E) accumulation point z.   By line (i)

lim, (x , zn,)=0.   Therefore, since   z   is a w{E c, E) accumulation point of

\znA, if follows that (xn, z) = 0 for each n.   But v = S~=1 x„k and z e E"0,

so (v, z)= sup   (E™ x„., z) = 0.

Thus we have that |(i7, z„¿)| > e/3 and (v, z) = 0, which contradicts z being

a  w(Ecrc, E)  accumulation point of i^n/J*

We now construct the element v = ^T xn,   by induction.  Setting »z0 = 1, we will

define inductively an increasing sequence of integers ». such that

(ii) L KV %, >l < e/3   and    ¿ l(V *■/-1)! * e/3-
7 = 1 77=77;-

Assume 72 ,, ...,72. are defined.   Since ¡z  ! converges to 0 on the x 's there

exists »»»j > (n. + l) with S7.= 1 |(x„, z )| < e/3 for n > Wj.  Since ix j is a

positive / -sequence, there exists an x in E with 2?=1 x, < x for all »».   Therefore

OO OO

ZKv%-)l<S(vls.l)<^l%l>-
77 = 1 77 = 1

Thus there exists m2>m1 with 2^=      Kx^ z„.)| < e/3.  Set í2.+1 = í7»2 and

we have that Sj=J |(x„., z„;.+1)| < f/3 and 2~=„.+   \(x¿ zn.)\ < i/3.   This com-

pletes the induction.

By line (ii) we have
oo oo

(ni) L l<v*.,>^   £   !<*«»*«, >1<e/3,
7=7+1 n=n;' + l

Set iz = ¿  =   jcb., 2V exists in E since ix  ! is an / -sequence and E is ff-complete.

Note that v = supm (2j?=1 x„.) and iz„.¡CEac, thus
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\(v. z„ .)| = sup
' m

K". *>| > sup

m

Z <V *J
inl

y-i m

Z(x   , z    ) + (x    , z    )+   y  (x    , z    )!
v 72,-'     Tjy'      ' rjy'     ny'        ¿^  x   >J,-'     ny'

¿=1 «=,+l

7=1 l'=J+l

By lines (i), (ii), and (iii), we have |(t>, z„.)\ > i/3, and this completes the proof.

Combining (2.6) and (2.8) with (2.3) we have

Corollary 2.9.   Let E be a-complete.   If A is relatively w(Eac, E)-compact

in Eac   then so is its convex solid envelope.

Consider an order bounded set \x  } of mutually disjoint elements of E.   Then

V" |x^| = 2" \xk\, so ¡xn! is an /'sequence of E.   This very special class of

/'-sequences will also characterize vaguely compact sets of Eac.

Proposition 2.11.   // E is a-complete and A C Eac,  then the following are

equivalent:

(1) A is relatively w(Eac, E)-compact.

(2) (a) A z's  \w\(Eac,E) bounded,   (b) // f*ni z's a bounded set of mutually

disjoint elements of E,  then limn ||x ||   o = 0.

Proof.   If the x^'s are bounded and mutually disjoint, then ¡x ! is an /'-sequence;

hence (1) implies (2).

We complete the proof by showing that (2) above implies (2) of (2.7).   Thus

A will be equi-CT-continuous on E, and hence by (2.8) relatively w(Eac, E)-compact.

It is easy to show that (2) above must also hold for the solid envelope of A.

Hence we may suppose A is solid.   Now suppose that (2.7) does not hold.   Then

there exist f > 0, x^ 1 0 in E, and \yn\ C A  such that |(xn, yn)| > It and

K*f!+1« y«)l < <?•   Moreover since |yj e A,  we may take yn > 0.   Also, A is

|w|(Ecr<r, E) bounded so there exist real A > 0 such that (xj, y  )< A for all 72.

There is no loss of generality in supposing that A = 1.

The following elementary relations are easily verified:

Let x > 0 and z in the closed ideal generated by x in E; then

(i) If / = xz+, then z, = z+.

(ii) If /=x^z_^xj+, then A/<z^.

Let fn + gn = Xj, where /   is the projection of *j on the closed ideal gen-

erated by ixn - fXj) .  It is easily verified that fn i 0.   By (i) and (ii), it follows

that f/B < xn and xn A gf¡ < „j,  thus x„ = x„ A xt = x„ A /„ + x„ A g„ < /„ +

ex..  Hence
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<*«• yn) S (/„. yn)+ («!. y„) < (fn - fn+v. y„) + </„+1. y„) + e

<!l/„-/»+ilUo + 2<-

Note that i(/n - /„+1)i are mutually disjoint and bounded, hence limn \\fn - fn+i\\.o

= 0.   Thus we obtain (xn, yn)< 3e for 72 large enough.   This contradicts the

choice of yn's and completes the proof.

Since the elements of Ec are continuous with respect to order convergence

of nets in E, we can state (2.6) in terms of nets.

Proposition 2.12.   Let E be o-complete.   Then for A C Ec the following are

equivalent:

(1) A  is equicontinuous on E.

(2) A  z's equi-o-continuous on E.

(3) A  z's equi-l -continuous on E.

Proof.   From Definition (2.1) it is clear that (1) implies (2).  Note that

A C Ec C Eac;  thus, by (2.6), (2) is equivalent to (3).   That (3) implies (1) follows

by an argument similar to the proof of (2.6).

Proposition 2.13.   Let E be o-complete.   Then for A C Ec,  the following

are equivalent:

(1) A  is equicontinuous on E.

(2) xa I 0  ¿72 E  implies lima ||xa||   o =0.

A characterization of vague compactness in Ec was first given for a special

case by Nakano [9, § 28].    The general case for cr-complete spaces was proved by

Kaplan [8, (3.4)].   We obtain this tesult as a corollary of (2.8) by considering

Ec as a sublattice of Ea<r.

Corollary 2.14.   // E z's o-complete, then for A C Ec the following are

equivalent:

(1) A z's equicontinuous on E.

(2) A z's relatively w(Ec, E)-compact in Ec.

We now give a characterization of w(Ec, E)-compactness which is most

simply stated for a solid set.   Later we will be able to extend this result to Eaç

and also obtain a partial extension to E°.

Proposition 2.15.   // E z's o-complete, then for a solid set A in Ec the

following are equivalent:

(1) A z's relatively w(Ec, E)-compact.

(2) (a) A  z's  |zz/|(Ec, E)-bounded, and (b) every countable set \yn\ of mutu-

ally disjoint elements of A converges to 0 z'72  |w|(Ec, E).
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Proof.   (1) =» (2) (a) above follows from (2.2).   Suppose (b) does not hold,

then there exist f > 0 and x £ E    and a countable set \yn\ of mutually disjoint

elements of A  such that (x, |yn|) > e.

Since A is solid, take \yn\ positive.   Let ln be the closed ideal in Ec

generated by yn and /   = (/^)   the dual ideal in E.   By Luxemburg and Zaanen

[8, (3-3)] /    is a band in E.   Let zn be the component of x in Jn.

Since yn's are mutually disjoint, the z^'s are also mutually disjoint and order

bounded by x.   Thus \zn\ is an / -sequence in E.   But for every n we have

llz„IL° > (z„, yn) = (x> yn) > e' znd hence a contradiction.

(2) =»(1) We will show (2) of (2.11) holds.   Suppose not.   Then there exist

í>0, {xn¡ bounded mutually disjoint positive elements of E,  and {y  I C A, yn > 0

such that (x , y  ) > t for all 72.
v   r, f ■> 77 ' —

Let /    be the closed ideal in E generated by xn.   Then ¡n = (jn)   in Ec

is a band, so let zfl be the component of y    in /„.

Then 2n > 0 and zn £ A  since A is solid.   There exist x > xn for all 72;

then (x, z/)> (xn, zn) = (x^, yn) > e.   But zn's ate mutually disjoint, since the

xn's are, hence by (2) above limn (x, zfl) = 0,  and again we have a contradiction.

3.   Compactness in Eb.   We now consider the question of characterizing

compactness in Eb in terms of equi-/ -continuity.   But first we need to prove some

results which give a deeper relationship between equi-/ -continuity and the order

structure on both E and Eb.

Each element s in Eb generates a closed ideal S which is a band in Eb .

So Eb = S © S . Hence there is a canonical projection of Eb onto S.   We will

denote the image of a subset A of Eb under this projection by A .

The idea for the next proposition essentially comes from a construction, in

a measure space, used by Ando [l].   When translated to a vector lattice, it has

the surprising property of being equivalent to equi-/ -continuity.    The importance

of Proposition (3.1) is that it allows us to take any order bounded sequence in E

and, in some sense,  || • ||   o-approximate it by a bounded monotone sequence.

Proposition 3.1.   Given a solid set A in Eb,  the following are equivalent:

(1) A is equi-l -continuous on E.

(2) For each order bounded sequence ¡x j in E and e > 0,  there exist two

sequences fyj and jzj such that

(a) yn=xn^ xn + l V • - V *,(„) and zn = A? yk  where j(n + l) > 7(72) > 72.

Proof.   (1) => (2) The sequence xn fe = V*_   x¿ ik > 72) is a bounded mono-

tone sequence for each fixed 72.   By (3) of (2.4) there exists a sequence of positive
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integers j(n) with j(n + 1) > j(n) > n and ||xn k - *n,y(n)|Lo < t/2n for all

k>j(n).  Set y„=V;'(72) and Z7z=Aiy*-   Then

o < y„ - ̂  = (y„ - Ä yk) < Z (y*+i - y*+iA y*)-

It follows since A is solid that
71^1

\\yn~zn\\A°^ £ lly*+i-y*+i Ay*ll o*

k=l

Now for any two elements of a vector lattice the following hold: y,+. -yfe+1 A y, =

y*+iV y*-y4, «> y*+i-yik+i Ay*-**.,(*+»-*ik,,w ™>»
77-1

lly« - ZJA° $ £ K. ;(*+i)- **. iik)K° -e-
k=i

(2) =»(1) Let ix^j be a bounded monotone increasing sequence in E and

t > 0.   Apply (1) above to jxj and e, getting y„ = xn V xn+1 V ... V xy(n) =

*,•(„)and 2„ = A£=i y* = x,d) such that lly» - *JU° <(/2-

Since A is solid, we have for »», m> j(l)

K - XmWAo < K - Xj(l)h° + H*™ - *,-(1)Ha°.

IK - Xmh* $ •!*/(«) * Xid)h° + K'<m) - X«(l)h° $ 2('
Thus by (2.4) A is equi-Z -continuous on E; and the proof is complete.

Consider s e Eb, s > 0.   For simplicity we will denote the seminorm

|| • ||r        io on E by || • ||s.   It is easy to show that ||x||s = (|x|, s) for all x e E.

Also, consider any z in the closed ideal S generated by s in E°.   It is then

easy to show that if lxn( is order bounded and if limn ||xj|s = 0, then    t

lim    ||xn||z = 0.   Thus any element z of S is || • ||s-continuous on each interval

of E.   We now give one of the main results of this section.

Theorem 3.2.   Let A be a subset of Eb, the following are equivalent:

(1) A  is equi-l -continuous on E.

(2) (a) A is \w\(Eb, E)-bounded, and (b) for each s e Eb, As is equi-l'-

continuous on E.

(3) (a) A is \w\(Eb, E)-bounded, and (b) for each s e Eb, As is \\.\\s-

equicontinuous on each interval of E.

(4) For each x e E and e>0, there exist 8 > 0 and a finite set [zA" C A

szzc¿ that: if \y\ < \x\ and ||y||z¿ < 5, i = 1, • • •, »», »¿er»   ||y||Ao < e.

(5) For each x e E,  there exists z in Eb such that: A  is  || • ||^equicontin-

uous on the interval [-x, x].

(6) // }xnl z's order bounded and \w\(E, Eb)-convergent to 0,  then
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Proof.   (1) =»(2) We may assume that A is solid; then As C A.   Thus As

must also be equi-/ -continuous on E.

(2) =»(3) By (2.3) we may assume As ls solid.  Suppose (3) does not hold,

then there exist e > 0, s > 0 in Eb and an order bounded sequence {x j C E

such that:  ||xjs < 1/2" and ¡xj^o > 2t.

Since As is solid, we may take xn > 0.   As is equi-/'-continuous on E,

hence by (3.1) there exist yn = xn V xn+1 V • • • V xjM and z„ = A? yi, such

that \\yn - z„\\a° < ««  Note that yn > 0, zn > 0 and |*J is a bounded monotone

decreasing sequence.

;(»)

Kll. = <*„•s' < <y„' s> < Z <v s> <L/2"~1-
fe=«

Thus limn \\zn\\s = 0.   But each element of As is || • ^-continuous on the order

bounded set \zj, thus limn (zn, w)=0 for each  w e A .    Note that ||z„IU° >

lyJU;-ly.-*JU»S*
By (2.4) there exist k such that \\zn _ zJ|A° < e/3. for n, m >k.   Fix

72 > k and choose w in As such that ||2n||^° < (zn, w) + e/3.   Then

ll*JIAo * K - ». lA° + K> «"> + f/3 * 2í/3 + <V *>•
s s

But limm (zm, w/)= 0, hence ¡«J^0 < e and we have a contradiction.

(3) =» (4) Suppose (4) does not hold, then there exist x £ E, e > 0, and

sequences |xj < x, \zn\ C A such that

<I*J. I*J> < i/2"    for 1 < k < n    and    |(x„. zn+1>| > e.

A is |u/|(E6. E)-bounded, so z = 2~=1 |zfc|/2* exists in E*.   Then limR ||xj|z = 0,

and hence by (3) limn llxjta0 = 0.  Now \zn\ is contained in the ideal generated

by z, thus {znJCAz.  Hence ||*JU° > |(*„. *„«)!£'» which again gives a

contradiction.

(4) => (5) Let x £ E.   Let en = l/n,  so by (4) there exist 8n > 0 and a finite

set Bn C A such that

If \y\ < \x\ and |bl|z<8„   for all z in Bn, then ||y||Ao < l/n.

Let 3=U~B,soBisa countable subset of A, denote 3 by \zn] where

the z^'s are elements of A.  A is |ti/|(Eè, E)-bounded, hence z = 2~ |zj/2n

exist in E .   It then follows that A is || • || z-equicontinuous on [-x, x].

(5) =* (6) Let |x ! be order bounded by x and \w\(E, E6)-convergent to 0.

By (5) choose z such that A is || • ||z-equicontinuous on [-x, x].  But

lim_ ||x ||   = 0, so lim„ ||x J| „o = 0, and hence (6) holds.
72   ']    71 "Z 72   n    Ti11^ *

(6) —» (1) Let |x ! be an /'-sequence in E, then note that {xj is \w\(E, E°)-

convergent to 0.   Thus by (6) lim ||xj|   o =0, so A is equi-/ -continuous on E,

and the proof is complete.
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IE and Ba   .   Consider a vector lattice E and its bounded dual E .   Then

Eb is an order complete vector lattice and has an otder continuous dual which

we denote by (Eb)c.   Since we always take E    separating on E, we have a

canonical imbedding of E in (Eb)c.   This imbedding is, in fact, a vector lattice

isomorphism of E with a linear sublattice of (Eb)c [6, (2.6)].   We will thus con-

sider E as contained in {Eb)c.

Consider two elements x, y in E; we point out that x Vy-in-E =x V y-in-

(E )c. However, the infinite sup or inf of elements in E may not agree with the

sup or inf in (Eb)c.

We will denote by ¡E the ideal generated by E in (Eb)c.   Thus E C /£ C (Eb)c

where ¡E = (y e (E )c: there exists x in E with |y| < |x|i.   ¡E   considered as a

vector lattice is Dedekind complete since (E )c is.   Also, note that if y =

V ya-in-/E, then y = \J y a-in-(EbY.

We now give (without proof) some known properties of 1E.   Note that E C IE,

thus E has an order closure E in the vector lattice IE.   As might be expected,

E is exactly ¡E.

Proposition 3.3.   E = IE.

Since /g is a vector lattice, it has an order continuous dual (/E)c.   We now

explictly state what this dual is.

Proposition 3.4.   (¡E)c = Eb.

Combining (3.3) and (3.4), we get the following:

Proposition 3.5.   E is  \w\{iE, E )-dense in IE.

Let Ba1  be the subspace of IE generated by the elements of the form: x =

V x -in-/f where ix  ! C E.   Then E C BaVl C IF.   Each element of Ba'4 can be
77 C 77 C

written as if - g) where / and g are each the sup in ¡E of a countable subset

of E.  Ba" is a subspace of IE, and it is easy to show that, in fact, Ba'1 is a

linear sublattice of IE.   Also, Bzz     is not cr-complete, but it has the property

that if ix  ! is an order bounded sequence of E, then   Vxn is an element of Ba™.

It is exactly this property that makes Ba'2  such an important sublattice of /£.

Also, note that if ix  Î is an /-sequence of E, then ¡2" |xn|! is an order bounded

sequence in /P.   Therefore, the order sum x = 2^° |xj = supn (2" |x, |) is an

element of Ba'1.

Remark.   It can be shown that (Ba'1)^ = Eb by modifying the proofs of (9.3)

and (9.6) in [8].

Let E = C{X) be the space of continuous functions on a compact set X.   Then

the Ba'1 associated with C{X) is a subspace of the first Baire class Ba , hence

the use of the notation Ba".
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Since E is contained in IE, each / -sequence in E is also an / -sequence in

IE, but IE has many more / -sequences than those contained in E.  Surprisingly,

if A C Eb is equi-/ -continuous on E, then A is equi-/ -continuous on E =/g.

Proposition 3.6.   A C E  ; fèe?2 £<je following are equivalent:

(1) A is equi-l -continuous on E.

(2) 'A z's equi-l -continuous on IE.

Proof.   (1) => (2) We will show that (5) of (3.2) holds for the spaces IE and

(/E)c = £ .   Consider an interval [-*0, xQ]-in-7g.   Choose x in E such that

|xQ| < x.   By (3.2) there exists an element z in E    such that A is|| • || -equicon-

tinuous on the interval [-x, x]-in-E.   It follows from (3.5) that the interval [-x, x]-

in-E is |w|(/£, E )-dense in the interval [-x, x]-in-/g.   It then can be shown

(from the denseness) that A  is  || • ||z-equicontinuous on [-x, x]-in-/g.

(2) => (1) Since E C /     (1) must hold and the proof is complete.

Combining (3.6) with (2.12) applied to the spaces IE and (/g)c = E°, we have

Corollary 3.7.   Let A CE6; then the following are equivalent:

(1) A  is equi-l -continuous on E.

(2) A  is equicontinuous on IE.

We will now complete the task of characterizing compactness in Eb in terms

of equi-/ -continuity. The following is the main result on this.

Theorem 3.8.   Let A C E  ; then the following are equivalent:

(1) A  z's equi-l -continuous on E.

(2) A is relatively w(E , I A-compact.

(3) A z's relatively w(E , 8a^)-compact.

Proof.   (1) =>(2) By (3.7) A is equicontinuous on IE.   Note that /g is a

Dedekind complete vector lattice and (/g)c = E  .   By applying (2.14) to the spaces

/g and (/g)c, it follows that A  is relatively wiE , /g)-compact.

(2) =»(3) The topology wiEb, 1E) is finer than wiEb, BaA), thus (3) must hold.

(3) "* (1) By an argument similar to (2.8) we find an / -sqeuence [xn¡ in E

and iy  ! C A  such that  \(v, y  )| > e and (v, y0) = 0 where v = sup    (2™ x )-in-/g

and y0   is a  wiE , BaA accumulation point.   Since v £ Ba   , we have a

contradiction of yQ   being a  wiEb, Ba'1) accumulation point of !ynl and the proof

is complete.

We now give the promised extensions of Proposition (2.15).

Corollary 3.9.   Let A  be a solid set in E ,  then the following are equivalent:

(I) A  is equi-l-continuous on E.
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(2) (a) A is \w\(E, E)-bounded, and (b) ezvery countable set \y \ of

mutually disjoint elements of A converges to 0 in \w\{E , E).

Proof.   Note that Eb = {¡E)c, then by (2.17), (2) above is equivalent to A

being relatively w{E , /g)-compact, and by (3.7) this is equivalent to A being

equi-/ -continuous on E; and the proof is complete.

Combining (3.9) with (2.8) gives

Corollary 3.10.   Let E be o-complete and A a solid set in E*c,  then the

following are equivalent:

(1) A z's relatively w(Eac, E)-compact.

(2) (a) A is \w\(E<Tc, E)-bounded, and (b) every countable set \y \ of

mutually disjoint elements of A converge to 0 in  \w\(E**c, E).

Remark.   For x e E,  let E    denote the ideal generated by x in E.   Then

Ex is the set of all elements y in E such that |y| < zz|x| for some a > 0.

Let ¡x denote the ideal generated by x in ¡E.  Then /    is the set of all

y e ¡E such that \y\ < a\x\ for some a > 0.  Thus Ex C / ,

Now E    is a norm space where the norm is given by ||y|| = inf izi > 0:

|y| <al*|l f°r each y in E .  Let Ex and E   denote the first and second dual

of the norm space (E^ ||. ||).   Note that Ex is a Banach space, and, in fact, the

norm is given by ||z|| = (|x|, |z|) for each z in E^.   Also, the norm on Ex is given

by llyll = m^ ifl > 0: \y\ < a\x\\ for each y in E .   In fact, it can be shown

[6, (4.1)] that E' = (E )b and E" = (E')c.  It follows that the ideal generated by

E    in E^ is exactly Ex.   Thus for this case (3.8) becomes a statement about

weak compactness in Ex.   For clarity, we state it here.

Proposition 3.11.   Let A CE ,  then the following are equivalent:

(1) A z's equi-l -continuous on E .

(2) A is relatively weakly compact.

We now show that equi-Acontinuity is closely related to sequential compactness.

Theorem 3.12.   Let A CE , í¿e7» the following are equivalent:

(1) A is equi-l -continuous on E.

(2) For each x in E and sequence \y \CA, there exist y in Eb anda

subsequence of \y ] which converges pointwise to y on the interval [—x, x]-z'»»-/E.

Proof.   (1) =» (2) Let x e E and iyn! C A.   Consider Ex and let T:Ex~+E

be the identity map.   Then it follows that 7"': Eb —» E'x and T": E'x —* I .

Since A is equi-/ -continuous on E, it follows easily that T\A) is equi-

/ -continuous on E .   Thus by (3.11) Tl(A) is relatively tu(Ex, Ex)-compact.

Hence by Eberlein's theorem [2, p. 430], there exists a subsequence ÍT'(y„i)l
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converging weakly to an element z of E .

Now iynjfci is equi-/ -continuous on E, and thus by (3.8), is relatively

wiEb, /g)-compact; hence has a w(Eb, /^-accumulation point y in E .

Since Tl: Eb —* E'x is continuous with respect to wiEb, IE) and UfiE^ E'x),

it follows that T'(y)  is a  wiE', E") accumulation point of fT^y,,^)!, and hence

\T'iy„A\ converges weakly to T'iy).

Let s e [-x, x]-in-/g.  It can be shown that Tu maps Ex onto / .   Thus

there exists r in E" such that Tnir) = s.   Thus

{s, y) = (r. T'(y)> = lim (r, T'(y„fc)) = lim (s, y„fc)

for each s in [-x, x]-in-/£.

(2) =» (1) Suppose A is not equi-/ -continuous on E, then there exist e > 0,

an /'-sequence jx ! in E, and jy ! C A such that \(xn, yn)\ > e for all 72. Since

{x  } is an / -sequence, thereexists an x in E such that 2" |xfe| <x for all ».

By (2) above choose a subsequence {yn¡¿ converging pointwise on [-x, x]-in-

/g to some y in E .   Let T: /   ~* IE be the identity map, then it follows that

Tl: (lE)c -» (Ix)c.  But (/g)c = Eb, so Tl: Eb -» (lx)c.   It is clear that

\Tl(ynA\ converges to T'iy) pointwise on Ix.  It then follows from (2.14) that it

is equicontinuous on I%.   So for k large \(x„k, TKynA)\ < e.  But \(x„k, TKy„k))\

= \(T(x„A, y„k)\ = \(x„k, y„k)\ >f, hence a contradiction; and this completes

the proof.

Consider x in E, and E    the ideal generated by x in E.   Then E    is a

closed ideal in Eb, hence a band, so Eb = Ex® (E^)'.   Each y in Eb has a

component in (Ex) , we will denote this component by (y)x (an abuse of notation).

Thus each element x in E determines a projection on Eb'.   Then equi-/'-continuity

on E can be stated in terms of these projections and relatively w(Eb, I/)-

sequential compactness.

Proposition 3.13.   Le/ A C E ,  then the following are equivalent:

(1) A is equi-l -continuous on E.

(2) A    z's relatively w(Eb, I A-sequentially compact for each x in E.

Proof.   (1) —» (2) Consider x in E and \yn\ C A.   By (3.12) there exists a

subsequence iy„fcl converging pointwise on  [-x, x]-in-/g to some y in E .

Now consider the ideal ¡x in IE, so the order closure ¡x is a band in IE,

thus /g = ¡x © (7^)'.   Since /   = U~=1 n [-x, x], it follows that ly„fe, converges

pointwise on /    to y.  I claim that fy^ii converges pointwise on 1 x.  Let

z e I , then thereexists a net jzal C /    such that za—*z in /g.   Then z a —» z

uniformly on {y„, Î since by (3.7) \yn/,} ls equicontinuous on IE.   From the

uniform convergence, it follows that lim. (z, y„,)=(z, y).   Therefore, \yn¡}
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converges pointwise on /   to y.   Since Eb = E1 © (E1)', IP = I    © / ', and
__ X X X C X X

Ex = /x = (/x) ; it follows that i(y7i/e)x! converges to (y)    in w(E , /£).

(2) =» (1) Suppose (1) does not hold, then there exist c > 0,  / -sequence

}x 1 in E, and iy  ! C A  such that |(x , y   )| > e for all 72.   Choose an element x
72 * '72 '       fl     ^ 72    '

in E such that 2" \xk\ < x for all 72.   By (2) above there exists a subsequence

Í (y«t,)„i converging in zz;(E , IA to some element y in E .   Note that (x )   =x
K   X i—i 71    X 7*

since the x 's are in the ideal / .   Thus l(x , (y ) )| = |((x ) , y )| = |(x , y )| >£.n x "   n     ■r n xn      '      nx,Jn''      lv   72   ' nn

Since i(ynzj)x5 converges in w{E :,lE), it follows from (3.8) that it is equi-/ -

continuous on E,  which contradicts \(x„k, (yn¿)  )l > f>

Note that by (3.8) every wiE , Ba") convergent sequence in E    must be

equi-/ -continuous on E and also converge in w{E , IE).   In (3.12) and (3.13)

the equi-/ -continuity of a convergent sequence was the critical fact in their proofs.

Thus they could be restated in terms of w(E , Ba   ) convergent sequences.

4.   Convergent sequences in E .   As usual, /°°, / , and cQ denote the real

space of bounded sequences, absolutely summable sequences, and sequences

converging to 0 respectively, each with its usual norm and order.   Then /°° =

(norm dual of / ) = (/ )c and /  = (/°°)c, thus each space is the other's order con-

tinuous dual.   Also (/°°)   = (norm dual of /°°).   Since /' = (/°°)c, I   is a band in

(/°°) ; hence each element y in (/°°)    has a component (y) , in / , in fact,

(/°°)° = /' © c0.  We will make use of the following theorem due to Phillips

[2, p. 296].

Proposition 4.1.   If a sequence  \y  \ in (l°°)    is w[(f°)b, /°°] convergent to

0, /¿e« i(y ),»! is norm-convergent to 0.

We will apply (4.1) to ff-complete vector lattices by the following technique

used by Kaplan [8, (3.2)].

Proposition 4.2.   Let E be o-complete and \x \ an I -sequence in E,  then

there exists a positive linear mapping F: !°° —> E satisfying F(e^) = |x | for all

n, where e    is the element of f° with the nth coordinate  1 and the remaining

coordinates 0.

This section will be devoted to extending the results of § 3 to w{E . E)-

convergent sequences of E .  Note that '3 3 restricted itself to the topologies

w{Eb, BaA) and w{Eb, IE) on Eb.   The main tool will be the deep result (4.3)

that wiE , E)-convergent sequences are equi-/ -continuous on E, when E is

^complete.

Theorem 4.3.   Let E be o-complete, then every w{Eb, E)-Cauchy sequence

in E    is equi-l -continuous on E.

Proof.   Let iy  } be w{Eb, E)-Cauchy.   Suppose A = {yn\ is not equi-/ -contin-
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uous on E, then there exist e> 0 and a positive / -sequence ix. I in E such

that \\xk\\   o > e.   Choose a subsequence \yn/J such that |(xfe, yn¡/[ > «.   For

simplicity of notation, let the original sequences have this property:  \(xn, y  )\ > e.

Applying (4.2) there exists a positive linear mapping F: l°° —* E such that

F(e„) = *_•   Then F : E   —> (/°°)    is continuous with respect to the topologies

wiEb, E) and w[(nb, t00].  It follows that {F'iy)} is w[inb, /°°]-Cauchy, and

hence converges to an element z of (/°°) .   Therefore, by (4.1) lim   \\iFliy )-z), ,\\

= 0.   Thus for 72 sufficiently large  ||(F'(yn) - z),.|| < e/2, hence |(en> F'iyJ-

iz)¡,)\ < e/2, so |<en, E'(yn))| < e/2 + |(en, (z);,)| for 72 large enough.  Note that

ten! converges to 0 in wil°°, I ), thus limn |(en, (z),#)| = 0.   Therefore,

|<e„. F'(y„))| <c lot n sufficiently large.  But |(en, Fl(yn))\ = |<P(en).yn>l =

|(xn, y )| > e, hence a contradiction; and the proof is complete.

Corollary 4.4.   // E z's a-complete, then E    z's w(Eb, E)-sequentially complete.

Combining (3.8) with (4.3) gives the following result due to Schaefer [ill:

Corollary 4.5.   Let E be a-complete.   If a sequence \y  \ in E    converges in

the topology w(Eb, E); then it converges in the topology w(Eb, I/).

For E a-complete, (3.12) can be strengthened from a statement about intervals

of /g to one considering only the intervals of E.

Proposition 4.6.   // E z's a-complete and A C Eb,  then the following are

equivalent:

(1) A ¿s equi-l -continuous on E.

(2) For each x in E and sequence \y  ! C A, there exist y in Eb and a

subsequence of \y  ! which converges pointwise to y on the interval [—x, x]-ztj-E.

Proof.   By (3.12), (1) implies (2).  Now assume (2) holds.   Suppose A is not

equi-/ -continuous on E.  Then there exist  e > 0, / -sequence {x { in E, and

iy„i C A  such that |(xn< yB)| > e.

Choose an element x in E such that 2" \x.\ <x for all 72.   By (2) above

there exists a subsequence [ynt) converging to an element y in E* on the

interval [-x, x]-in-E.

Consider the identity map T: Ex—> E and T': Eb —» E'x, then Tl(ynA con-

verges to T'(y) in f(F¿. Ex).  Note that E'x = (E /b.  Applying (4.3) to the spaces

Ex and Ex, it follows that T\ynA is equi-/'-continuous on E ,   But

\(x„k, T'(yn/t))| = |(*n¿> ynk)\  > e> and ix„^i is an / -sequence in Ex, hence a

contradiction; and this completes the proof.

For E a-complete, we get the following strengthening of (3.13) by applying

(4.5).   This points out the close relationship between vague sequential compactness

and equi-/ -continuity.
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Proposition 4.7.   // E is o-complete and A C Eb, then the following are

equivalent:

(1) A z's equi-l -continuous on E.

(2) A    is relatively w(Eb, E)-sequentially compact for each x in E.

As stated earlier, each element w in Eb generates a closed ideal in Eb, and

hence determines a projection on Eb, denoted by (y)     for y in E .

This projection is determined purely by the order structure on Eb; however,

there is a relationship between this and vaguely convergent sequences.

Proposition 4.8.   Let E be o-complete.   If iy  Î converges to y in w(E , E)

and 0 < w   T wQ in E    z¿e72 i(y )w  \ converges to (y)WQ in w(E , E).

Proof.   Consider IE and (IE)c = E .   Let /    be the closed ideal generated by

w    in Eb and /    = (/ )   the dual ideal in /p.   Then /    is a band in /p.   For x
71 72 77 c J rt c

in E, let x   = ix), .   Note that (x , z) = (x, (z)w ) for each z in E .

Since wn T wQ in E , it follows that xn TxQ = (x),    in IE.   From (4.3) it

follows that iyni is equicontinuous on IE, thus x   T xQ uniformly on the yn's.

Therefore, by the uniform convergence, it follows that

<*, iy)wa> = <*o* y> =lim <v y,,) -lim <*» ̂«W
u 77 72 Tt

for each x in E.   Hence i(yn)u,ni converges to (y)WQ in »¿/(E , E).

Corollary 4.9. Let E be o-complete. If \y \ converges to y in w(E , E)

then, for any closed ideal I in E , the projection \(y )¡\ converges to (y)¡ in

w(Eb, E).

Proof.   Since iyn! is equi-Z'continuous on E, it follows that i|ynl;l is

|z^|(Eè, E)-bounded.   Thus z = 2~ \yn\,/2n is an element of Eb and (yr)z =

iyn)¡.   By (4.8) Ky )z\ converges to iy)    in zz7(E , E); and this completes the proof.
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