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ABSTRACT. A sequence {x"} in a vector lattice E will be called an -
sequence if there exists an x in E such that ZZ=1 |x1¢| < x for all n. Denote
the order dual of E by E® Foraset AC Eb, let || “AO denote the Minkowski
functional on E defined by its polar A%in E. A set ACE?® will be called
equi-l'ocontinuous on E if lim ||xn||A°=0 for each l'-sequence {xn} in E,

The main objective of this paper will be to characterize compactess in
E? in tems of the order structure on E and E® In particular, the relationship
of equi-l l-continuity to compactness is studied. §2 extends to E°€ the results
in Kaplan [8] on vague compactess in ES, Then this is used to study vague
convergence of sequences in E®,

1. Introduction. The main objective of this paper will be to characterize
compactness in the order dual E b of a vector lattice E in terms of the order
structure on E. §2 extends to EC results in Kaplan [8] on vague compactness
in ES. Then §3 considers the order dual E? of a vector lattice, and Theorem
(3.8) characterizes compactness in E b in terms of the order structure. These re-
sults are then used in $4 to extend those in Schaefer [11] on vaguely convergent
sequences. We now give the basic properties of a vector lattice that will be needed.

Throughout this paper, we will always assume that a vector lattice E is
archimedean. A set in E will be called order bounded if it is contained in some
interval [x, yl ={z € E: x <z <y}. A subset A of E will be called solid if it
has the property: x € 4, |y| < |x| implies y € A. The solid envelope of A is the
smallest solid set containing A. In fact, the solid envelope of A is the set
U, cs = Il 15l

A vector lattice E will be called complete if the sup VA and inf AA of
every order bounded set A exist. E will be called o-complete if the sup and inf
of every countable order bounded set exist.

A net {x,} in E is ascending (respectively descending) if for every pair of
indices, a < 3 implies x g < xg (respectively x, > xﬁ). The notation x, Tx
means that x, is ascending and x = Vx ; similarly for x, | % A net ix,}is
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said to order converge to x if there exists a net {y .} such that y, 10 and

|x 4 = x| <y, forall a. We will denote order convergence by x, — % A subset
A of E will be called order closed if for every net {x } in A, x, — x implies
that x € A. Given any set A, the smallest order closed set containing A will be
called the order closure of A, and denotes by A.

An ideal I of E is a linear subspace with the property that @ € I, |b] < |a|
implies b € I. If an ideal I has a compiementary ideal J, thatis E =1 @], then
I will be called a band. It follows that there is a canonical projection of E onto
I. We will denote the image of a set A under this projection by A;: A, ={x;: x € A}
This canonical projection preserves sup’s and inf’s: x = VA implies x; = VA,
and x = \A implies x; = /\A,.

Two elements x, y of E are called disjoint if |x| A |y| =0. Given a set A
in E we will denote by A’ the set {x € E: |x| A |ly| =0 forall y in A}. It can
be shown that A’ is a closed ideal and that (A")’ is the closed ideal generated
by A. It follows that if E =1 @], then | =1'* Later we will need the following:

Theorem 1.1 (Riesz). If E is complete, every closed ideal I is a band:
E-=1®I

A real linear functional f on E will be called bounded if it is bounded on
every order bounded set of E. The vector space of bounded linear functionals on
E will be called the bounded dual of E and denoted by E% Under the definition
f<g if (x, f{)<(x g) for all x in E* (the positive cone of E), E® is a complete
vector lattice.

A linear functional f on E will be called continuous if x, — x in E implies
lim, (x5 f)=(x [} We will denote the set of continuous linear functionals on
E by E€. A linear functional f on E will be called o-continuous if x, — x in
E implies lim, (x", f)={x f) and the set of o-continuous linear functionals on
E will be denoted by E°C, Then E€ CE CE®, and, infact, E€ and E°° are
each a band in E%

The weak topology on E defined by E® will be denoted by w(E, E b), In this
paper EY will always be taken separating on E, hence the weak topology
w(E, Eb) is Hausdorff. E® also defines a finer topology on E than the weak topology.
This topology is given by the family of seminorms | *||,, y running through E b,
where ||x||y =(|x|, ly|) for each x in E. We will denote it by |w|(E, E®). An
equivalent definition of this topology is that it is the topology given by the polars
in E of intervals of E®,

In a similar manner, |w|(E®, E) is defined on E® by the family of seminorms
el ,» Where now x runs through E. Also, E defines the vague (or weak™)
topology on E®, denoted by w(E?, E).
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2. Compactness in E°° and E€. A sequence {x } in a vector lattice E will
be called an I'-sequence if there exists an element x in E such that 27 %, | <=
for all n. It is clear that if {x } is an I'-sequence and ly,l < lxnl, then {ynl is
also an I'-sequence.

Any I'sequence {x,} converges to 0 in |w|(E, E®). For there exists x in E
such that 27 |x,| <x for all n. Now consider y € E®, then Z¢lxls ) <
(%5 ly|)s and thus lim (||, ly|)= 0.

Given a subset A if E® we will denote by ||* || o the Minkowski functional on
E defined by its polar A° in E. Thus for each x in E we have ||x|| o=
SUp, e A K= ¥

Consider the sublattices of E€ and E°, Each element of E€ is continuous
with respect to order convergence of nets of E, and each element of E’¢ is con-
tinuous with respect to order convergence of sequences of E; whereas, each ele-
ment of E® is continuous with respect to convergence (always to 0, of course) of
1 '-sequence of E. The analogy of this for a set of linear functionals is the following.

Definition 2.1, 1. A subset A of E€ will be called equicontinuous on E if
limg ||x, || o =0 for each net x, — 0 in E.

2. A subset A of E° wxll be called equi-o-continuous on E if lim, “x “ o=0
for each sequence x, — 0 in E.

3. A subset A of E® will be called equi-l'-continuous on E if lim |x, || o=
for each I'-sequence {x } in E.

Equivalently, (2.1) says that A is equicontinuous on E if each order conver-
gent net in E converges uniformly on A; A is equi-o-continuous if each order
convergent sequence in E converges uniformly on A; and A is equi-/ ‘continuous
if each /'sequence converges to 0 uniformly on A. We now give some basic
properties of equi-+ continuous subsets of E b,

Proposition 2.2. An equi-l ‘-continuous set A of linear functionals on E is
|w|(E®, E)-bounded.

Proof. Let x be an element of E and suppose sup, ., (I%| 5 ly|)= . For
each n choose y_ in A such that (|x|, ly |} > 2". Now (|x|, ly,|) =
SUP| | < «] Kb, y, ), so choose |b,| < |x| such that b, y,)| > 2", thus
I(bn/ 2",y I >1. But {,/2"} isan ! "-sequence in E, and we have a contradic-
tion since A is equi-/"-continuous on E.

Proposition 2.3. A subset A of E® is equi-l'-continuous on E if and only if
its (convex) solid envelope is equi-l '.continuous on E.

Proof. We need only consider the solid envelope B of A, since it is clear
Ly . . . . .
that equi-/ -continuity is equivalent for a set and its convex envelope.
. . gt . . .
Suppose B is not equi-/ -continuous, then there exists € > 0 and an [ -sequence
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{x_} such that “xn“‘B°> e Since {x_} isan I'-sequence there is an element x of
E such that 27 |x,| <x for all n. Since "x""B°> ¢, choose {y, } CA such that
=, 05 by, > e
By standard formula (|x_|, ly,|) = sup|b|s|x | k&, y,)l; so choose |b | < < |x |
such that Kb Y, ) > e But {b } is also an I-sequence, and ||b || 0>
K, y, 1> e Thus we have a contrad1ct1on of A bemg equi-l’ -contmuous on E.
Remark. To show that a subset A of E® is equi-/-continuous on E, one
need only show that lim_ ||x "Ao =0 for each positive I'sequence of E. This
follows since [x, || o< ||x I jo+llx 1l ;o and {x } (respectively {x 1) is a

positive I -sequence whenevet {x } is an I'sequence of E.

Proposition 2.4. .Let A be a subset of Eb; the following are equivalent:
(1) A'is equi-l'-continuous on E.

(2) Every bounded monotone net in E is | *|| ao-Cauchy.

(3) Every bounded monotone sequence in E is ||* ||Ao-Caucby.

Proof. (1) = (2) Suppose (2) does not hold, then there exists a bounded mono-

tone increasing net {x} which is not || || 4o-Cauchy. Thus there exist ¢>0 and
@, La, <.« such that ""anﬂ -x, || o >e Now {x_} is order bounded by
some element x on E, so 2%, (x"'kﬂ - x“k) =(xa, 4 - % ) <lx-x, ) Thus
{(xakﬂ k)} isanl’ -sequence in E and we have a conttad1ct1on

Of course, (2) implies (3).
(3) = (1) Consider a positive I"sequence {x_} in E. Set y =27 x,. Then
{y_} is a bounded monotone increasing sequence of E. Thus
n g seq

lim %, o = lim ly,, - /L0 = 0

and the proof is complete.
Contained in the above proof is the following useful observation:

Corollary 2.5. A subset A of E® is equi-l'-continuous on E if and only if
every countable subset of A is equi-l ‘.continuous on E.

The main result (2.8) of this section is the characterization of vaguely compact
O . . . .
subsets of E7C in terms of the order structure on E, in particular, in terms of
equi-o-continuity on E,

Proposition 2.6. Let E be o-complete. Then for A CEC the following are
equivalent:
(1) A is equi-0-continuous on E.

(2) A is equi-l'-continuous on E.

Proof. Since E is o-complete, it follows that x, — 0 for any I'-sequence
{x,} in E. Hence (1) implies (2).
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Assume (2) holds. Note that we may take A solid. Let x, — 0 in E, then
there exist y, 1 0 such that |xni <y, Let ¢>0. By (2.4) choose k such that
lly, =Y pll go <€ for n, m > k. Fix n (n > k). Since |x || 0 =sup 4 Kx,, 2)l,
choose z € A such that "xn"Ao < I(xn, z)| + €. Then for m > k

Il 4o < Do 12D + €<y, = Y0ll 40 + s 121) + €< (s 21) + 26

But lim(y,_, |z|)=0, thus le"“Ao <3¢ for n > k. Hence lim, le""Ao =0 and
the proof is complete.

Proposition 2.7. Let E be o-complete. Then for A CEC the following are
equivalent:

(1) A is equi-o-continuous on E.

2) x, loin E implies lim Hxn"Ao =0.

Proof. That (1) implies (2) follows from the definition of A being equi-o-
continuous on E. Assume (2) holds, and suppose A is not equi-o-continuous on
E. Then there exist € > 0 and a sequence x, — 0 in E such that "xn“A° > e

Since x, — 0 in E, there exists a sequence ly } in E with |x | <y  and
Y 10. Choose z, in A such that (x, z )| > e Since Yn lo, (y" V) lxl,
hence since z; belongs to E, there exists n, such that |(y,,l Vg, zl)l > e
There exists z, in A such that [(x,,, z,)| > e Since (y" Vx, 1)1 Xn, there
exists n, >n, such that I(y,,2 V %51, zz)| > €. Proceeding inductively we obtain
ny <n,<ny<... and {z,} CA satisfying Kyn, V %n;_ 2,)| > € Set
W, =Yn V Xy _y, thed w, L0 and IIwklle >¢. Thus (2) fails to hold, and the
proof is complete.

For a o-complete vector lattice E, vague compactness in E % is completely
characterized by equi-o-continuity on E.

Theorem 2.8. If E is o-complete, then for A CE the following are
equivalent:

(1) A is equi-o-continuous on E.

(2) A is relatively w(E°C, E)-compact in E°C,

Proof. (1) = (2) It follows from (2.2) that A is |w|(E, E)-bounded, hence
w(E®¢, E)-bounded. Thus its vague closure B in the algebraic dual E* of E is
w(E¥, E)-compact. Thus one need only show that B C E°C, This follows easily
from the fact that order convergent sequences of E must converge uniformly on A.

(2) = (1) Suppose A is not equi-o-continuous on E, then there exist ¢ >0
and a positive /'-sequence {w,} in E such that lwgll yo > 2e

Set k) =1 and choose y, in A such that Kwg,, y,)| > 2¢. Now

lim,e (wk. yl) =0, since fwk} is an l'-sequence. It follows that we can choose an



188 OWEN BURKINSHAW

integer k, and an element y, in 4 so that Kwi, y )| <€ and Kwpy y,) > 26
Proceeding inductively, we obtain sequences {w; ”l, {y”} CA such that
Kk, v, > 2¢ and Kwi, 4y ¥, )| <€ for m <k . Hence (wg, y, -y N> € for
m <k,. For simplicity of notation, let our original sequences have this property:
l(wk, Vi —ym)l > ¢ for m <k.

Since {y,} is relatively w(E, E)-compact it has a w(E, E) accumulation
point y in E°¢, By a diagonal method we can choose a subsequence {yk"}
such that lim (w,, yi,)=(w, y)for each k.

Set z, = (yk, = Y&,_,) and x, = w; . Then we have that

@) (%, z,)| > € and li’:n(xn, z,)=0 for each n.

We will construct an element v in E such that [(v, z,,k)l > ¢/3 for an infinite
subsequence 7, where v = 27| xp,.

Suppose this construction is completed. Since {znk} is also relatively
w(E®C, E)-compact, it has a w(E%, E) accumulation point z. By line (i)
lim, (x, z,,)=0. Therefore, since z is a w(E%®, E) accumulation point of
{2, }s if follows that (x , z)=0 for each n. But v =2 x,, and z € E%,
so (v, z)=sup (27 x,,, z)=0.

Thus we have that v, z,,)| > ¢/3 and (v, z) = 0, which contradicts z being
a w(E°, E) accumulation point of {z,,}.

We now construct the element v = 27 x,, by induction. Setting 7, = 1, we will
define inductively an increasing sequence of integers n i such that

j=1 s
(ii) > K, z, ) <e/3 and > =, zn,'-l)| <e/3.
i=1 n=n;

Assume Mmyseeesn; are defined. Since {z"} converges to 0 on the xn’s there
exists ml:> (rz]. +1) with 21_) Kx,, 2z )l <€/3 for n>m . Since {x }isa
positive /'-sequence, there exists an x in E with 2}_, x, <x for all n. Therefore

2 Wy 2, NS X 2, ) Sl D
n=1

n=1
Thus there .exists m, >m, with 2::;’” lgx", z,,].)| <é€/3. Set 4 =m, and
we have that 2::1 |(x,,1, zn’.ﬂ)l <é¢/3 and 2n=n,'+1 l(x". z"i)l <¢/3. This com-

pletes the induction.
By line (ii) we have

(iii) Z l(xni, znj)l < Z |(x", z"j ) < €/3.
i=j+l n=n;. 4

00 . . . . .
Set v = 21. =1 %n;» v exists in E since {x } isan/ ‘-sequence and E is o-complete.
Note that v = sup,, (37, x,) and {z,,i} CE’, thus
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9,

Z (xn," zn,‘)

o 2,0 = sup
l=l

j=1 e
|<‘U, zn">| 2 sup z <xn," znj>+ <xn," zﬂj)+ Z (x"i, z"j) ’

m |i=1 i=j+1
j=-1 m
Ko 2, ) 2 Kx,0 2, M= 30 Wxpn 2, 0 = 30 Kx, s 2,00
] ] ] . z 7 .. 1 ]
i=1 i=j+l

By lines (i), (ii), and (iii), we have [(v, z,,].)| > €/3, and this completes the proof.
Combining (2.6) and (2.8) with (2.3) we have

Corollary 2.9. Let E be o-complete. If A is relatively w(E°¢, E)-compact
in E9 then so is its convex solid envelope.

Consider an order bounded set {x"} of mutually disjoint elements of E. Then
V7 |x.| =327 |x,|, so {x_} is an I'sequence of E. This very special class of
11"k 1 "k n
I'-sequences will also characterize vaguely compact sets of E%°,

Proposition 2.11. If E is o-complete and A C E°C, then the following are
equivalent:

(1) A is relatively w(E°C, E)-compact.

(2) (a) A is |w|(E°C,E) bounded. (b) If {x,} is a bounded set of mutually
disjoint elements of E, then lim_ ||x || o =0.

Proof. If the x ’s are bounded and mutually disjoint, then {x,} is an I'-sequence;
hence (1) implies (2).

We complete the proof by showing that (2) above implies (2) of (2.7). Thus
A will be equi-o-continuous on E, and hence by (2.8) relatively w{E, E)-compact.

It is easy to show that (2) above must also hold for the solid envelope of A.
Hence we may suppose A is solid. Now suppose that (2.7) does not hold. Then
there exist €>0, x_ | 0 in E, and {y,} CA such that [(x,, y,)| > 3¢ and
Kx, 410 ¥, < €. Moreover since ly,| € A, we may take ¥p20. Also, A is
|w|(E, E) bounded so there exist real A >0 such that {x,, y )< X for all n.
There is no loss of generality in supposing that A = 1.

The following elementary relations are easily verified:

Let x>0 and z in the closed ideal generated by x in E; then

(i) If f=x_+, then z/=z+.

(i) If f=2%,_ 5.+ then M <z

Let [ +g,=x,, where f, is the projection of %, on the closed ideal gen-
erated by (x” - "‘1)+‘ It is easily verified that /. 1 0. By (i) and (ii), it follows
that ¢f, < x, and x, A g <ex;, thus x, =x, Ax;=x, Af +x Ng, <f +
ex;. Hence
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("n' }’,,>S</,,' )’,,)"' (‘xl' )’,,)S </n _fn+l' )’,,) +(/n+l' yn> +e€
< "/,, - /n“qu + 2€.

Note that {(f, ~ f,+,)} are mutually disjoint and bounded, hence lim, |If,, = f,+1ll 4o
= 0. Thus we obtain (x", ¥,) < 3¢ for n large enough. This contradicts the
choice of y_’s and completes the proof.

Since the elements of E€ are continuous with respect to order convergence
of nets in E, we can state (2.6) in terms of nets.

Proposition 2.12. Let E be o-complete. Then for A CE€ the following are
equivalent:

(1) A is equicontinuous on E.

(2) A is equi-o-continuous on E,

(3) A is equi-l"-continuous on E.

Proof. From Definition (2.1) it is clear that (1) implies (2). Note that
A C E€ C E®¢; thus, by (2.6), (2) is equivalent to (3). That (3) implies (1) follows
by an argument similar to the proof of (2.6).

Proposition 2.13. Let E be o-complete. Then for A CES, the following
are equivalent:

(1) A is equicontinuous on E.

2 %, L 0 in E implies limg |xqll o = 0.

A characterization of vague compactness in E€ was first given for a special
case by Nakano [9, $28). The general case for o-complete spaces was proved by
Kaplan [8, (3.4)). We obtain this result as a corollary of (2.8) by considering
E€ as a sublattice of E°C.

Corollary 2.14. If E is o-complete, then for A CE€ the following are
equivalent:

(1) A is equicontinuous on E.

(2) A is relatively w(E€, E)-compact in E€.

We now give a characterization of w(E€, E )-compactness which is most
simply stated for a solid set. Later we will be able to extend this result to E°¢
and also obtain a partial extension to E b,

Proposition 2.15. If E is o-complete, then for a solid set A in E€ the
following are equivalent:

(1) A is relatively w(E€, E)-compact.

(2) (a) A is |w|(ES, E)-bounded, and (b) every countable set ly } of mutu-
ally disjoint elements of A converges to 0 in |w|(E€, E).
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Proof. (1) = (2) (a) above follows from (2.2). Suppose (b) does not hold,
then there exist ¢ >0 and x € E* and a countable set {yn} of mutually disjoint
elements of A such that (x, |yn|) > €.

Since A is solid, take {y } positive. Let I, be the closed ideal in E€
generated by y_ and J, = (I})' the dual ideal in E. By Luxemburg and Zaanen
(8, (3.3)] J, is a band in E. Let z, be the component of x in J,.

Since y ’s are mutually disjoint, the z s are also mutually disjoint and order
bounded by x. Thus {zn} is an I'-sequence in E. But for every n we have
||zn||A° >(z,, y,)=(%, y,) > ¢, and hence a contradiction.

(2) = (1) We will show (2) of (2.11) holds. Suppose not. Then there exist
€>0, {x } bounded mutually disjoint positive elements of E, and {y, }CA4, y, >0
such that (x_, y_)> ¢ for all n.

Let ], be the closed ideal in E generated by x,. Then I = (],J,')' in E€
is a band, so let z_ be the component of y, in I,.

Then 2z, >0 and z, € A since A is solid. There exist x > x,, for all n;
then (x, z )>(x,, z,)=(x,, y,) > €. But z,’s are mutually disjoint, since the
xn's are, hence by (2) above lim (x, zn) =0, and again we have a contradiction.

3. Compactness in E®, We now consider the question of characterizing
compactness in E® in terms of equi-/ ".continuity. But first we need to prove some
results which give a deeper relationship between equi-I’-continuity and the order
structure on both E and E®.

Each element s in E® generates a closed ideal S which is a band in E?,
So Eb = S ® S'. Hence there is a canonical projection of E® onto S. We will
denote the image of a subset A of E® under this projection by A,

The idea for the next proposition essentially comes from a construction, in
a measure space, used by Ando [1]. When translated to a vector lattice, it has
the surprising property of being equivalent to equi-/ ‘continuity. The importance
of Proposition (3.1) is that it allows us to take any order bounded sequence in E

and, in some sense, |- || a°-approximate it by a bounded monotone sequence.

Proposition 3.1. Given a solid set A in Eb, the following are equivalent:

(1) A is equi-l'-continuous on E.

(2) For each order bounded sequence {xn} in E and ¢> 0, there exist two
sequences {y } and {z,} such that

@ y,=x, Vx4 V.. Vx

itny @nd 2z, = A%y, where j(n +1) 2 j(n) 2 n,
) Ty, - 2llo <.
A

Proof. (1) = (2) The sequénce x_ , = V;‘=" x; (k >n) is a bounded mono-
ton® sequence for each fixed n. By (3) of (2.4) there exists a sequence of positive
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integers j(n) with j(n + 1) > j(n) > 7 and llx,. & = "n.i(n)"A° < ¢/2" for all
k> j(n). Sety,=x, i, and z, =A%y, Then

n-1

n
05)’,,"2,,= ()',,‘ /l\ )'k> < Z (yk.+l "}’k+1/\)'k)'
k=1

It follows since A is solid that
n-1

"yﬂ ‘zﬂ"Ao S Z "yk...l -yk+l /\ yk"AO‘
k=1

Now for any two elements of a vector lattice the following hold: y, 4; =y, 4, Ay, =
VentV k=Y 50 Yeuy = Ypwy Ny = X ik +1) = Xk, ey THUS
n~1
lyn = 2all 40 < kzl %k, i1y = *a, jaoll g0 S €

(2) = (1) Let i{x,} be a bounded monotone increasing sequence in E and
€> 0. Apply (1) above to !xn} and ¢, getting y, =%, V %4 V...V Xitn) =
%i(n) and 2, = A2y = x;(1) such that |ly, - z,|| ,o <e/2.

Since A is solid, we have for n, m> j(1)

“",, - X “Ao S "" - xi(l)"A° + ""m - xi(l)“A°’

"" -x "A° < "",(,,) 1(1)"A° + "",(m) - ",,(1)"Ao < 2.
Thus by (2.4) A is equx-l -continuous on E; and the proof is complete.
Consider s € Eb, s >0. For simplicity we will denote the seminorm

I ||[ s on E by |- ls. It is easy to show that |x||s = (|*|, s) for all x € E.
Also, consider any z in the closed ideal S generated by s in Eb, It is then

easy to show that if {x } is order bounded and if lim, ||x,||; = 0, then
lim_|lx,ll, = 0. Thus any element z of § is || ||;-continuous on each interval
of E. We now give one of the main results of this section.

Theorem 3.2. Let A be a subset of Eb, the following are equivalent:

(1) A is equi-l'-continuous on E.

(2) (a) A is |w|(E®, E)-bounded, and (b) for each s € E®, As is equi-l'
continuous on E.

(3) (a) A is |w|(EY, E)-bounded, and (b) for each s € E®, A_is ||,
equicontinuous on each interval of E.

(4) For each x € E and ¢> 0, there exist 8 >0 and a finite set {z,J1 CA
such that: if 9| < |¢] and ylleg < s i= L -+, m then |yl 4o <e

(5) For each x € E, there exists z in EP such that: A is | .| ,-equicontin-
uous on the interval [-x, x].

(6) If Ix,} is order bounded and |w|(E, E®)-convergent to 0, then
lim, |lx"||A°= 0.
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Proof. (1) =(2) We may assume that A is solid; then A_ CA. Thus 4
must also be equi-!'-continuous -on E.

(2) =(3) By (2.3) we may assume A_ is solid. Suppose (3) does not hold,
then there exist €>0, s >0 in E® and an order bounded sequence {x n! CE
such that: ||z [ < 1/2" and “xn"A: > 2e.

Since A_ is solid, we may take x, >0. A  is equi-/'-continuous on E,
hence by (3.1) there exist y, =x, Vx4V .--V Xi(n) and Z, = /\’l' ¥ such
that ||y, - z,| 42 <e Notethar y >0, z, >0 and {z,} is a bounded monotone
decreasing sequence.

j(n)
lz,lls = (2, ) SOy S T €1 s) S1/2771
k=n
Thus lim |z, || =0. But each element of A is | . ||;-continuous on the order

bounded set {z }, thus lim, (z,, w)=0 for each w € A Note that ||Z,,“Ag 2
lyallag - lly, - 2z lla0 2 e

By (2.4) there exist k such that ||z -z "A° <¢/3. for n, m > k. Fix
7>k and choose w in A such that ||z, ||Ag g(z w) + ¢/3. Then

||zf."||A° <z, -z, "Ag +(z,,, w)+€e/3<2/3 +(z,, w).
S

But lim (z,, w)=0, hence ||zn||Ag < € and we have a contradiction.
(3) = (4) Suppose (4) does not hold, then there exist x € E, ¢>0, and
sequences Ix"| <x, {z,} CA such that

(], 12,y <1/2" for 1<k<nmn and |(x, z,,,)|>e

A is |w|(E®, E)-bounded, so z = -, |z,|/2% exists in E®. Thea lim, |x,|l, =0,
and hence by (3) lim, ||x,|| A% =0. Now {z,} is contained in the ideal generated
by 2, thus {z } CA . Hence llx,llag 2 Kx", 2,41 )| 2 € which again gives a
contradiction.

(4) = (5) Let x € E. Let €, =1/n, so by (4) there exist 8,>0 and a finite
set B, CA such that

If lyl < x| and |yl <8, forall z in B , then ||y|| o<1/n.

Let B -Ul B,, so B is a countable subset of A, denote B by {z } where
the z,’s are elements of A. A is |w|(E®, E)-bounded, hence z = 2T |z, |/2"
exist in E® It then follows that A is ||- || ,-equicontinuous on [-x, x].

(5) = (6) Let {x_} be order bounded by x and |w|(E, E b).convergent to 0.

By (5) choose z such that A is || - || ,-equicontinuous on [, x]. But
lim, |x ||, =0, so lim |l || ,o =0, and hence (6) holds.

(6) = (1) Let {x, } be an I -sequence in E, then note that {x } is |w|(E, Eb)-
convergent to 0. Thus by (6) lim ||, || 0 =0, so A is equi-'-continuous on E,
and the proof is complete.
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Ig and Ba”. Consider a vector lattice E and its bounded dual E®. Then
E® is an order complete vector lattice and has an order continuous dual which
we denote by (E®)°, Since we always take E® separating on E, we have a
canonical imbedding of E in (E®)°, This imbedding is, in fact, a vector lattice
isomorphism of E with a linear sublattice of (E bye [6, (2.6)]. We will thus con-
sider E as contained in (E®)C,

Consider two elements x, y in E; we point out that x V y-in-E = x V y-in-
(EY)e, However, the infinite sup or inf of elements in E may not agree with the
sup or inf in (E®),

We will denote by I the ideal generated by E in (E®)¢. Thus E C IgC (EY©
where I =1{y € (E®): there exists x in E with |y| < |x|}. I considered as a
vector lattice is Dedekind complete since (E b)¢ is. Also, note that if y =
V yg-in-dg, then y = \ y ,-in-(E®)°.

We now give (without proof) some known properties of I ;. Note that E Cl,
thus E has an order closure E in the vector lattice | g- As might be expected,

E is exactly Ig.

Proposition 3.3. E = 1.

Since I is a vector lattice, it has an order continuous dual ( E)c. We now
explictly state what this dual is.

Proposition 3.4. (I;)€ = E%.

Combining (3.3) and (3.4), we get the following:
Proposition 3.5. E is |w|(Ig, E®)-dense in Ig.

Let Ba” be the subspace of I generated by the elements of the form: x =
\ x,-inlp where {x } CE. Then EC Ba” C Ig. Each element of Ba” can be
written as (f — g) where [ and g are each the sup in I of a countable subset
of E. Ba” isa subspace of I, and it is easy to show that, in fact, Ba” is a
linear sublattice of Ig. Also, Ba” is not o-complete, but it has the property
that if {xnl is an order bounded sequence of E, then Vxn is an element of Ba*.
It is exactly this property that makes Ba” such an important sublattice of E*
Also, note that if {x } isan! “sequence of E, then {27 x|} is an order bounded
sequence in /. Therefore, the order sum x = 27 |x,| = sup, (27 |x,|) is an
element of Ba”.

#)°¢ —~ E® by modifying the proofs of (9.3)

Remark. It can be shown that (Ba
and (9.6) in [8.

Let E = C(X) be the space of continuous functions on a compact set X. Then
the Ba” associated with C(X) is a subspace of the first Baire class Ba!, hence

. 1
the use of the notation Ba”,
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Since E is contained in I, each ! "_sequence in E is also an I'-sequence in
Ig, but I has many more / ‘.sequences than those contained in E. Surprisingly,
if A CE?® is equi-l'-continuous on E, then A is equi-l'-continuous on E =1,

Proposition 3.6, A C E®; then the following are equivalent:
(1) A is equi-l'-continuous on E.

(2) A is equi-l'-continuous on 1.

Proof. (1) = (2) We will show that (5) of (3.2) holds for the spaces I and
Ug)=E b, Consider an interval [~xy xol-in-/g. Choose x in E such that
lxol <x. By (3.2) there exists an element z in E® such that 4 is I\ - "‘-equicon-
tinuous on the interval [-x, x]-in-E. It follows from (3.5) that the interval [-x, x]-
in-E is |w|(Ig, E b)-dense in the interval [-x, x}-in-I . It then can be shown
(from the denseness) that A is |- || -equicontinuous on [, x]-in/ 5.

(2) = (1) Since E Cl, (1) must hold and the proof is complete.

Combining (3.6) with (2.12) applied to the spaces I and (Ig)° = E®, we have

Corollary 3.7. Let A CE®; then the following are equivalent:
(1) A is equi~l'-continuous on E.

(2) A is equicontinuous on Ig.

We will now complete the task of characterizing compactness in E b in terms
of equi-/'-continuity. The following is the main result on this.

Theorem 3.8. Let A CEY; then the following are equivalent:
(1) A is equiol'ocontir;uous on E.

(2) A is relatively w(E®, 1g)-compact.

(3) A is relatively w(E®, Ba%)-compact.

Proof. (1) = (2) By (3.7) A is equicontinuous on /5. Note that I isa
Dedekind complete vector lattice and (Ig)° = E b, By applying (2.14) to the spaces
Ig and (I5)°, it follows that A is relatively w(E®, I g)-compact.

(2) = (3) The topology w(E®, 1) is finer than w(E®, Ba*), thus (3) must hold.

(3) = (1) By an argument similar to (2.8) we find an I'-sqeuence {x"} in E
and {y } CA such that |(v, y )| > €and(v, y,) =0 where v =sup (37 x )-in-I g

y,’ we have a

and y, isa w(EY% Ba”) accumulation point. Since v € Ba
contradiction of y; being a w(E®, Ba”) accumulation point of {y,} and the proof
is complete.

We now give the promised extensions of Proposition (2.15).

Corollary 3.9. Let A be a solid set in Eb, then the following are equivalent:
(1) A is equi-l'ocontinuous on E.
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(2) (a) A is |w|(E® E)-bounded, and (b) every countable set ty,}of
mutually disjoint elements of A converges to 0 in |w|(E®, E).

Proof. Note that E® = (I g)€, then by (2.17), (2) above is equivalent to A
being relatively w(E®, I g)-compact, and by (3.7) this is equivalent to A being
equi-l'-continuous on E; and the proof is complete.

Combining (3.9) with (2.8) gives

Corollary 3.10. Let E be o-complete and A a solid set in E°°, then the
following are equivalent:

(1) A is relatively w(E°¢, E)-compact.

(2) (@) A is |w|(E, E)-bounded, and (b) every countable set {y_} of
mutually disjoint elements of A converge to 0 in |w|(E°¢, E).

Remark. For x € E, let E_ denote the ideal generated by x in E. Then
E, is the set of all elements y in E such that |y| <a|x| for some a> 0.

Let I denote the ideal generated by x in Ig. Then I_ is the set of all
y € Ig such that |y| < a|x| for some a>0. Thus E_CI_,

Now E, is a norm space where the norm is given by |ly|| = inf {2 > 0:

lyl < alx|} for each y in E_. Let E and E, denote the first and second dual

of the norm space (E, ||-[). Note that E’: is a Banach space, and, in fact, the
norm is given by [zl =(|x|, |z|) for each z in E’:. Also, the norm on E; is given
by |yl = inf {a > 0: |y| < a|x|} for each y in E:. In fact, it can be shown

(6, (4.1)] that E; = (E,)® and E, = (E))°. It follows that the ideal generated by
E_in E: is exactly E: Thus for this case (3.8) becomes a statement about
weak compactness in E’: For clarity, we state it here..

Proposition 3.11. Let A C E,:, then the following are equivalent:
(1) A is equi-l'-continuous on E,
(2) A is relatively weakly compact.

We now show that equi-I'-continuity is closely related to sequential compactness.

Theorem 3.12. Let A CEY, then the following are equivalent:

(1) A is equi-l"-continuous on E.

(2) For each x in E and sequence iyn} CA, there exist y in E® and a
subsequence of {y_} which converges pointwise to 'y on the interval [-x, x]-in-Ig.

Proof. (1) =(2) Let x € E and {y,} CA. Consider E, and let T: E, —E
be the identity map. Then it follows that T*: E® — E and T*: E_ — 1.

Since A is equi-l'-continuous on E, it follows easily that TXA) is equi-
I'-continuous on E_. Thus by (3.11) TXA) is relatively w(E_, E_)-compact.
Hence by Eberlein’s theorem [2, p. 430, there exists a subsequence {T%y, k)}



THE ORDER DUAL OF A VECTOR LATTICE 197

converging weakly to an element z of E’;

Now {y, k} is equi-l ' continuous on E, and thus by (3.8), is relatively
w(EY, I g)-compact; hence has a w(E?, I g)-accumulation point y in E®,

Since T*: E® — E, is continuous with respect to w(E b 1) and w(E’:. E)),
it follows that TXy) is a w(E], E.) accumulation point of {T*(y,,)}, and hence
{T!yn,)} converges weakly to T*(y).

Let s € [-x, x]-in-I g+ It can be shown that T! maps E; onto I.. Thus
there exists 7 in E, such that T*!(r) =s. Thus

(s, y) =(n TGN = lim (r Ty, ) = lim (s, y,,)

for each s in [—x, x)-in-I .

(2) = (1) Suppose A is not equi-!/"-continuous on E, then there exist ¢ >0,
an I'-sequence {x } in E, and fy } CA such that |(x, y )| > € for all n. Since
fx”l is an I'-sequence, thereexists an x in E such that 2} |%,| <% for all n.,

By (2) above choose a subsequence {y, k} converging pointwise on [-x, x]-in-
Ig to some y in E b, Let T: 1 » — I be the identity map, then it follows that
T ()" — (L )°. But (Ip)° = E%, so T E® — (1)°. Itis clear that
{T'(y,,k)l converges to T'(y) pointwise on I . It then follows from (2.14) that it
is equicontinuous on I . So for k large [(xpp T‘(y,,k))l <e But [xn, T‘(y,,k»l
= KT(xp,)s ym 2 = [{xnp ¥ )l > € hence a contradiction; and this completes
the proof.

Consider x in E, and E_ the ideal generated by x in E. Then E; isa
closed ideal in E?, hence a band, so E® = E:@ (E:)'. Each y in E® hasa
component in (E i‘)', we will denote this component by (y) , (an abuse of notation).
Thus each element x in E determines a projection on E b, Then equi-l'ocontinuity
on E can be stated in terms of these projections and relatively w(E b1 E)'
sequential compactness.

Proposition 3.13. Let A C E®, then the following are equivalent:
(1) A is equi-l'-continuous on E.
(2) A, is relatively w(E®, I g)-sequentially compact for each x in E.

Proof. (1) = (2) Consider x in E and {y,} CA. By (3.12) there exists a
subsequence {y,,} converging pointwise on [-x, x}-in-I; to some y in Eb,

Now consider the ideal I in I, so the order closure I is a band in I,
thus Iz =1 _@® (). Since I = U:=1 n [=x, x], it follows that {yﬁi converges
pointwise on I to y. Iclaim that {y,,} converges pointwise on I . Let
z € 7;, then thereexistsa net {z,} CI_ such that z, — z in I, Then 2, — z
uniformly on {y,,k} since by (3.7) {y,,kl is equicontinuous on I ;. From the
uniform convergence, it follows that lim, (2, y,,)=(z, y). Therefore, {y,,k}
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converges gointwise on Tx to y. Since Eb - Ei‘ 52] (Ei)', Ig= l-x (s3] l.;, and
E:: I:: (lx)J‘; it follows that {(y,,) } converges to (y)_ in w(EY, Ig).

(2) = (1) Suppose (1) does not hold, then there exist ¢ >0, I'-sequence
{x,} in E, and ly } CA such that [(x,, y )| > ¢ for all n. Choose an element x
in E such that 27 |x,| <x for all n. By (2) above there exists a subsequence
{(y,,k)xi converging in w(E®, IE) to some element y in E®% Note that (xn)x =x,
since the x s are in the ideal /,. Thus Kx I N = K)o y ) = Kxpo ¥ N e
Since {(y,,k)x} converges in w(Eba,IE), it follows from (3.8) that it is equi-I'~
continuous on E, which contradicts [(x,; (ynp) ) > €

Note that by (3.8) every w(E®, Ba") convergent sequence in E® must be
equi-/"-continuous on E and also converge in w(E®, I g) In(3.12) and (3.13)
the equi-/'-continuity of a convergent sequence was the critical fact in their proofs.
Thus they could be restated in terms of w(E®, Ba”) convergent sequences.

4. Convergent sequences in E b, As usual, I°,1’, and c, denote the real
space of bounded sequences, absolutely summable sequences, and sequences
converging to 0 respectively, each with its usual norm and order. Then 1” =
(norm dual of I') = (I')€ and I’ = (I")€, thus each space is the other’s order con-
tinuous dual. Also (/*)? = (norm dual of I”). Since I’ = (™), I is a band in
(I“)b; hence each element y in (I°)® has a component (y) , in [ !, in fact,
()% =1' ® c . We will make use of the following theorem due to Phillips
[2, p. 296).

Proposition 4.1. If a sequence ly } in (1®)? is w[(I°)8, I] convergent to
0, then {(y,),s} is norm-convergent to 0.

We will apply (4.1) to o-complete vector lattices by the following technique
used by Kaplan [8, (3.2)].

Proposition 4.2. Let E be o-complete and {xn} an l'-sequence in E, then
there exists a positive linear mapping F:1° — E satisfying F(e ) = |x | for all
n, where e is the element of I with the nth coordinate 1 and the remaining
coordinates 0.

This section will be devoted to extending the results of §3 o w(E®, E)-
convergent sequences of E b, Note that §3 restricted itself to the topologies
w(E®, Ba¥) and w(E®, I) on E®. The main tool will be the deep result (4.3)
that w(E®, E)-convergent sequences are equi-/ ‘.continuous on E, when E is
o-complete.

Theorem 4.3. Let E be o-complete, then every w(E®, E)-Cauchy sequence

in E® is equi-1"-continuous on E.

Proof. Let {y } be w(E®, E)-Cauchy. Suppose A ={y_} is not equi-/ ‘-contin-
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uous on E, then there exist € >0 and a positive /'-sequence {xkf in E such
that ||xklle > €. Choose a subsequence {y,,k¥ such that [(x,, y,,k)l >é. For
simplicity of notation, let the original sequences have this property: |(x o )’,,)I >e
Applying (4.2) there exists a positive linear mapping F: I°°— E such that
Fle,) =x,. Then F* E® — (1*)® is continuous with respect to the topologies
w(E®, E) and wl(®)?, I®]. It follows that {F “y ) is w[(1®)®, 1*}-Cauchy, and
hence converges to an element z of (I*)?, Therefore, by (4.1) lim ||(F‘(yn) -z)l,ll
=0. Thus for n sufficiently large [[(F'(y,) - 2),/[| <€/2, hence [e,, F'y,) -
&))< €e/2, so (e, Fiy W <e¢/2+ (e, (2),»)| for n large enough. Note that
te,} converges to 0 in w(I™, "), thus lim_ e, (z),s)| = 0. Therefore,
Ke,, Fy )| <€ for n sufficiently large. But Ke,» Ffly M = KFe,), y, ) =
lx,» ¥ )| > €, hence a contradiction; and the proof is complete.

Corollary 4.4. If E is o-complete, then E® is w(E®, E)-sequentially complete.
Combining (3.8) with (4.3) gives the following result due to Schaefer [11]:

Corollary 4.5. Let E be o-complete. If a sequence ly,}in E® converges in
the topology w(E®, E); then it converges in the topology w(E®, Ig).

For E o-complete, (3.12) can be strengthened from a statement about intervals
of I to one considering only the intervals of E.

Proposition 4.6, If E is o-complete and A C Eb, then the following are
equivalent:

(1) A is equi-l-continuous on E.

(2) For each x in E and sequence {y } C A, there exist y in Eb and a

subsequence of {y_} which converges pointwise to y on the interval [-x, x)-in-E.
q n ges p y

Proof. By (3.12), (1) implies (2). Now assume (2) holds. Suppose A is not
equi-/-continuous on E. Then there exist €> 0, I'-sequence {x,} in E, and
ty,} CA such that [(x, Yol >e

Choose an element x in E such that 27 |x,| <x for all n. By (2) above
there exists a subsequence {y,,ki converging to an element y in E® on the
interval [-x, x]-in-E.

Consider the identity map T: E_ — E and T* E® — E,, then T'(y,,) con-
verges to T'(y) in w(E), E ). Note that E =(E x)b. Applying (4.3) to the spaces
E_ and Eg, it follows that T'(y,, i) is equi-I'-continuous on E .+ But
[E3 Tyn))| = [(ng yap)l 26 and {x,,} is an I'-sequence in E,, hence a
contradiction; and this completes the proof.

For E o-complete, we get the following strengthening of (3.13) by applying
(4.5). This points out the close relationship between vague sequential compactness °
and equi-l'-continuity.
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Proposition 4.7. If E is o-complete and A C Eb, then the following are
equivalent:

(1) A is equi-l'-continuous on E.

(2) A is relatively w(E®, E)-sequentially compact for each x in E.

As stated earlier, each element w in E® generates a closed ideal in E b, and
hence determines a projection on E b, denoted by (y) for y in E°, b

This projection is determined purely by the order structure on E b, ; however,
there is a relationship between this and vaguely convergent sequences.

Proposition 4.8. Let E be o-complete. If {y_} converges to y in w(E®, E)
and 0 Sw, Two in E then {(yn)wn} converges to (}')wo in w(EY, E).

Proof. Consider I and (Ig)° =E%, Let I, be the closed ideal generated by
w, in E% and J,= (IJ‘) the dual ideal in Ig. Then J, is a band in Ig. For x
in E, let x = (x)] . Note that (x , z)=(x (2)y )for each z in Eb,

Since w Two in E®, it follows that x lxo = (x)J in Ig. From (4.3) it
follows that {y } is equicontinuous on I, thus x Txo uniformly on the y_'s.
Therefore, by the uniform convergence, it follows that

(x, 0, = xgs ¥ = l’ilm (%0 ¥,) = linm (%, &v,),. )
for each x in E. Hence l(yn)wn} converges to (y)u,o in w(EY, E).

Corollary 4.9. Let E be o-complete. If {y,} converges to y in w(E®, E)
then, for any closed ideal 1 in E®, the projection {(y,);} converges to (y); in
w(E®, E).

Proof. Since {y }is equl-l' continuous on E, it follows that {Iy |,l is
|w|(E®, E)-bounded. Thus z =7 |y_|,/2" is an element of E® and b,), =
() By (4.8) {(y,),} converges to (y), in w(E®, b, E); and this completes the proof.
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