On proper homotopy theory for noncompact $3$-manifolds
HTML articles powered by AMS MathViewer
- by E. M. Brown and T. W. Tucker
- Trans. Amer. Math. Soc. 188 (1974), 105-126
- DOI: https://doi.org/10.1090/S0002-9947-1974-0334225-X
- PDF | Request permission
Abstract:
Proper homotopy groups analogous to the usual homotopy groups are defined. They are used to prove, modulo the Poincaré conjecture, that a noncompact 3-manifold having the proper homotopy type of a closed product $F \times [0,1]$ or a half-open product $F \times [0,1)$ where F is a 2-manifold is actually homeomorphic to $F \times [0,1]$ or $F \times [0,1)$, respectively. By defining a concept for noncompact manifolds similar to boundary-irreducibility, a well-known result of Waldhausen concerning homotopy and homeomorphism type of compact 3-manifolds is extended to the noncompact case.References
- R. H. Bing, Locally tame sets are tame, Ann. of Math. (2) 59 (1954), 145–158. MR 61377, DOI 10.2307/1969836
- W. Browder, J. Levine, and G. R. Livesay, Finding a boundary for an open manifold, Amer. J. Math. 87 (1965), 1017–1028. MR 189046, DOI 10.2307/2373259
- Edward M. Brown, The Hauptvermutung for $3$-complexes, Trans. Amer. Math. Soc. 144 (1969), 173–196. MR 251729, DOI 10.1090/S0002-9947-1969-0251729-7 —, On proper homotopy type, Lecture Notes in Math., vol. 375, Springer-Verlag, Berlin and New York.
- E. M. Brown, Unknotting in $M^{2}\times I$, Trans. Amer. Math. Soc. 123 (1966), 480–505. MR 198482, DOI 10.1090/S0002-9947-1966-0198482-0
- C. H. Edwards Jr., Open $3$-manifolds which are simply connected at infinity, Proc. Amer. Math. Soc. 14 (1963), 391–395. MR 150745, DOI 10.1090/S0002-9939-1963-0150745-3
- Hans Freudenthal, Über die Enden topologischer Räume und Gruppen, Math. Z. 33 (1931), no. 1, 692–713 (German). MR 1545233, DOI 10.1007/BF01174375
- L. S. Husch and T. M. Price, Finding a boundary for a $3$-manifold, Ann. of Math. (2) 91 (1970), 223–235. MR 264678, DOI 10.2307/1970605
- Wolfgang Heil, On $P^{2}$-irreducible $3$-manifolds, Bull. Amer. Math. Soc. 75 (1969), 772–775. MR 251731, DOI 10.1090/S0002-9904-1969-12283-4
- D. R. McMillan Jr., Some contractible open $3$-manifolds, Trans. Amer. Math. Soc. 102 (1962), 373–382. MR 137105, DOI 10.1090/S0002-9947-1962-0137105-X
- Edwin E. Moise, Affine structures in $3$-manifolds. VIII. Invariance of the knot-types; local tame imbedding, Ann. of Math. (2) 59 (1954), 159–170. MR 61822, DOI 10.2307/1969837
- L. C. Siebenmann, Infinite simple homotopy types, Nederl. Akad. Wetensch. Proc. Ser. A 73 = Indag. Math. 32 (1970), 479–495. MR 0287542, DOI 10.1016/S1385-7258(70)80052-X
- L. C. Siebenmann, On detecting open collars, Trans. Amer. Math. Soc. 142 (1969), 201–227. MR 246301, DOI 10.1090/S0002-9947-1969-0246301-9 —, The obstruction to finding a boundary for an open manifold of dimension greater than 5, Thesis, Princeton University, Princeton, N. J., 1965.
- Friedhelm Waldhausen, On irreducible $3$-manifolds which are sufficiently large, Ann. of Math. (2) 87 (1968), 56–88. MR 224099, DOI 10.2307/1970594 J. H. C. Whitehead, Simplicial spaces, nuclei, and m-groups, Proc. London Math. Soc. 45 (1939), 243-327. E. C. Zeeman, Seminar on combinatorial topology, Inst. Hautes Etudes Sci., Paris, 1963. (mimeographed)
- E. M. Brown and R. H. Crowell, Deformation retractions of 3-manifolds into their boundaries, Ann. of Math. (2) 82 (1965), 445–458. MR 182012, DOI 10.2307/1970707
- Marianne Brown, Constructing isotopies in noncompact $3$-manifolds, Bull. Amer. Math. Soc. 78 (1972), 461–464. MR 298667, DOI 10.1090/S0002-9904-1972-12945-8
Bibliographic Information
- © Copyright 1974 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 188 (1974), 105-126
- MSC: Primary 57A65
- DOI: https://doi.org/10.1090/S0002-9947-1974-0334225-X
- MathSciNet review: 0334225