A matrix representation for associative algebras. I
HTML articles powered by AMS MathViewer
- by Jacques Lewin
- Trans. Amer. Math. Soc. 188 (1974), 293-308
- DOI: https://doi.org/10.1090/S0002-9947-1974-0338081-5
- PDF | Request permission
Abstract:
Let F be a mixed free algebra on a set X over the field K. Let U, V be two ideals of F, and $\{ \delta (x),(x \in X)\}$ a basis for a free $(F/U,F/V)$-bimodule T. Then the map $x \to (\begin {array}{*{20}{c}} {x + V} & 0 \\ {\delta (x)} & {x + U} \\ \end {array} )$ induces an injective homomorphism $F/UV \to (\begin {array}{*{20}{c}} {F/V} & 0 \\ T & {F/U} \\ \end {array} )$. If $F/U$ and $F/V$ are embeddable in matrices over a commutative algebra, so is $F/UV$. Some special cases are investigated and it is shown that a PI algebra with nilpotent radical satisfies all identities of some full matrix algebra.References
- S. A. Amitsur, The identities of $\textrm {PI}$-rings, Proc. Amer. Math. Soc. 4 (1953), 27–34. MR 52397, DOI 10.1090/S0002-9939-1953-0052397-3
- S. A. Amitsur, A noncommutative Hilbert basis theorem and subrings of matrices, Trans. Amer. Math. Soc. 149 (1970), 133–142. MR 258869, DOI 10.1090/S0002-9947-1970-0258869-5
- George M. Bergman and Warren Dicks, On universal derivations, J. Algebra 36 (1975), no. 2, 193–211. MR 387353, DOI 10.1016/0021-8693(75)90098-8
- D. E. Cohen, On the laws of a metabelian variety, J. Algebra 5 (1967), 267–273. MR 206104, DOI 10.1016/0021-8693(67)90039-7
- P. M. Cohn, On a generalization of the Euclidean algorithm, Proc. Cambridge Philos. Soc. 57 (1961), 18–30. MR 118743, DOI 10.1017/s0305004100034812
- Paul M. Cohn, On a class of rings with inverse weak algorithm, Math. Z. 117 (1970), 1–6. MR 279123, DOI 10.1007/BF01109821
- Ralph H. Fox, Free differential calculus. I. Derivation in the free group ring, Ann. of Math. (2) 57 (1953), 547–560. MR 53938, DOI 10.2307/1969736
- Karl W. Gruenberg, Cohomological topics in group theory, Lecture Notes in Mathematics, Vol. 143, Springer-Verlag, Berlin-New York, 1970. MR 0279200, DOI 10.1007/BFb0059162
- C. K. Gupta and N. D. Gupta, On the linearity of free nilpotent-by-abelian groups, J. Algebra 24 (1973), 293–302. MR 310061, DOI 10.1016/0021-8693(73)90139-7
- Nathan Jacobson, Lie algebras, Interscience Tracts in Pure and Applied Mathematics, No. 10, Interscience Publishers (a division of John Wiley & Sons, Inc.), New York-London, 1962. MR 0143793
- John P. Labute, Algèbres de Lie et pro-$p$-groupes définis par une seule relation, Invent. Math. 4 (1967), 142–158 (French). MR 218495, DOI 10.1007/BF01425247
- V. N. Latyšev, Generalization of Hilbert’s theorem on the finiteness of bases, Sibirsk. Mat. Ž. 7 (1966), 1422–1424 (Russian). MR 0202746
- Jacques Lewin, On some infinitely presented associative algebras, J. Austral. Math. Soc. 16 (1973), 290–293. Collection of articles dedicated to the memory of Hanna Neumann, III. MR 0340329, DOI 10.1017/S1446788700015068
- I. V. L′vov, Maximality conditions in algebras with identity relations, Algebra i Logika 8 (1969), 449–459 (Russian). MR 0279127
- Roger C. Lyndon, Cohomology theory of groups with a single defining relation, Ann. of Math. (2) 52 (1950), 650–665. MR 47046, DOI 10.2307/1969440
- Wilhelm Magnus, On a theorem of Marshall Hall, Ann. of Math. (2) 40 (1939), 764–768. MR 262, DOI 10.2307/1968892
- Lance W. Small, An example in $\textrm {PI}$-rings, J. Algebra 17 (1971), 434–436. MR 272823, DOI 10.1016/0021-8693(71)90025-1
Bibliographic Information
- © Copyright 1974 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 188 (1974), 293-308
- MSC: Primary 16A64; Secondary 16A42
- DOI: https://doi.org/10.1090/S0002-9947-1974-0338081-5
- MathSciNet review: 0338081