Representation of functions as limits of martingales
HTML articles powered by AMS MathViewer
- by Charles W. Lamb
- Trans. Amer. Math. Soc. 188 (1974), 395-405
- DOI: https://doi.org/10.1090/S0002-9947-1974-0339328-1
- PDF | Request permission
Abstract:
In this paper we show that if $(\Omega ,\mathcal {F},P)$ is a probability space and if ${\{ \mathcal {F}{_n}\} _{n \geq 1}}$ is an increasing sequence of sub-$\sigma$-fields of $\mathcal {F}$ which satisfy an additional condition, then every real valued, ${\mathcal {F}_\infty }$-measurable function f can be written as the a.e. limit of a martingale ${\{ {f_n},{\mathcal {F}_n}\} _{n \geq 1}}$. The case where f takes values in the extended real line is also studied. A construction is given of a “universal” martingale ${\{ {f_n},{\mathcal {F}_n}\} _{n \geq 1}}$ such that any ${\mathcal {F}_\infty }$-measurable function is the a.e. limit of a suitably chosen subsequence.References
- Y. S. Chow, Convergence theorems of martingales, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 1 (1962/63), 340–346. MR 150820, DOI 10.1007/BF00533409
- R. M. Blumenthal and R. K. Getoor, Markov processes and potential theory, Pure and Applied Mathematics, Vol. 29, Academic Press, New York-London, 1968. MR 0264757
- J. L. Doob, Stochastic processes, John Wiley & Sons, Inc., New York; Chapman & Hall, Ltd., London, 1953. MR 0058896
- David Gilat, Convergence in distribution, convergence in probability and almost sure convergence of discrete martingales, Ann. Math. Statist. 43 (1972), 1374–1379. MR 324769, DOI 10.1214/aoms/1177692494
- Richard F. Gundy, Martingale theory and pointwise convergence of certain orthogonal series, Trans. Amer. Math. Soc. 124 (1966), 228–248. MR 204967, DOI 10.1090/S0002-9947-1966-0204967-0
- Hiroshi Kunita and Shinzo Watanabe, On square integrable martingales, Nagoya Math. J. 30 (1967), 209–245. MR 217856, DOI 10.1017/S0027763000012484
- Michel Loève, Probability theory, 3rd ed., D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto, Ont.-London, 1963. MR 0203748
- Luis Báez-Duarte, An $\textrm {a.e.}$ divergent martingale that converges in probability, J. Math. Anal. Appl. 36 (1971), 149–150. MR 278366, DOI 10.1016/0022-247X(71)90025-4 J. Marcinkiewicz, Sur les nombres dérivés, Fund. Math. 24 (1935), 305-308.
- Paul-A. Meyer, Probability and potentials, Blaisdell Publishing Co. [Ginn and Co.], Waltham, Mass.-Toronto, Ont.-London, 1966. MR 0205288
- Stanisław Saks, Theory of the integral, Second revised edition, Dover Publications, Inc., New York, 1964. English translation by L. C. Young; With two additional notes by Stefan Banach. MR 0167578
Bibliographic Information
- © Copyright 1974 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 188 (1974), 395-405
- MSC: Primary 60G45
- DOI: https://doi.org/10.1090/S0002-9947-1974-0339328-1
- MathSciNet review: 0339328