Canonical forms and principal systems for general disconjugate equations

Author:
William F. Trench

Journal:
Trans. Amer. Math. Soc. **189** (1974), 319-327

MSC:
Primary 34C10

DOI:
https://doi.org/10.1090/S0002-9947-1974-0330632-X

MathSciNet review:
0330632

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: It is shown that the disconjugate equation (1) $Lx \equiv (1/{\beta _n})(d/dt) \cdot (1/{\beta _{n - 1}}) \cdots (d/dt)(1/{\beta _1})(d/dt)(x/{\beta _0}) = 0$ , *a* $< t < b$, where ${\beta _i} > 0$, and (2) ${\beta _i} \in C(a,b)$, can be written in essentially unique canonical forms so that ${\smallint ^b}{\beta _i}dt = \infty ({\smallint _a}{\beta _i}dt = \infty )$ for $1 \leq i \leq n - 1$. From this it follows easily that (1) has solutions ${x_1}, \ldots ,{x_n}$ which are positive in (*a, b*) near $b(a)$ and satisfy ${\lim _{t \to b}} - {x_i}(t)/{x_j}(t) = 0({\lim _{t \to a}} + {x_i}(t)/{x_j}(t) = \infty )$ for $1 \leq i < j \leq n$. Necessary and sufficient conditions are given for (1) to have solutions ${y_1}, \ldots ,{y_n}$ such that ${\lim _{t \to b}} - {y_i}(t)/{y_j}(t) = {\lim _{t \to a}} + {y_j}(t)/{y_i}(t) = 0$ for $1 \leq i < j \leq n$. Using different methods, P. Hartman, A. Yu. Levin and D. Willett have investigated the existence of fundamental systems for (1) with these properties under assumptions which imply the stronger condition $(2’){\beta _i} \in {C^{(n - i)}}(a,b)$.

- W. A. Coppel,
*Disconjugacy*, Lecture Notes in Mathematics, Vol. 220, Springer-Verlag, Berlin-New York, 1971. MR**0460785** - Philip Hartman,
*Disconjugate $n$th order differential equations and principal solutions*, Bull. Amer. Math. Soc.**74**(1968), 125–129. MR**222388**, DOI https://doi.org/10.1090/S0002-9904-1968-11904-4 - Philip Hartman,
*Principal solutions of disconjugate $n-{\rm th}$ order linear differential equations*, Amer. J. Math.**91**(1969), 306–362. MR**247181**, DOI https://doi.org/10.2307/2373512 - Philip Hartman,
*Corrigendum and addendum: “Principal solutions of disconjugate $n$-th order linear differential equations”*, Amer. J. Math.**93**(1971), 439–451. MR**291557**, DOI https://doi.org/10.2307/2373386 - A. Ju. Levin,
*The non-oscillation of solutions of the equation $x^{(n)}+p_{1}(t)x^{(n-1)}+\cdots +p_{n} (t)x=0$*, Uspehi Mat. Nauk**24**(1969), no. 2 (146), 43–96 (Russian). MR**0254328** - G. Pólya,
*On the mean-value theorem corresponding to a given linear homogeneous differential equation*, Trans. Amer. Math. Soc.**24**(1922), no. 4, 312–324. MR**1501228**, DOI https://doi.org/10.1090/S0002-9947-1922-1501228-5 - D. Willett,
*Asymptotic behaviour of disconjugate $n$th order differential equations*, Canadian J. Math.**23**(1971), 293–314. MR**293196**, DOI https://doi.org/10.4153/CJM-1971-030-4 - D. Willett,
*Disconjugacy tests for singular linear differential equations*, SIAM J. Math. Anal.**2**(1971), 536–545. MR**304772**, DOI https://doi.org/10.1137/0502055

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC:
34C10

Retrieve articles in all journals with MSC: 34C10

Additional Information

Keywords:
Disconjugacy,
principal systems

Article copyright:
© Copyright 1974
American Mathematical Society