Differentiability of solutions to hyperbolic initial-boundary value problems
HTML articles powered by AMS MathViewer
- by Jeffrey B. Rauch and Frank J. Massey
- Trans. Amer. Math. Soc. 189 (1974), 303-318
- DOI: https://doi.org/10.1090/S0002-9947-1974-0340832-0
- PDF | Request permission
Abstract:
This paper establishes conditions for the differentiability of solutions to mixed problems for first order hyperbolic systems of the form $(\partial /\partial t - \sum {A_j}\partial /\partial {x_j} - B)u = F$ on $[0,T] \times \Omega ,Mu = g$ on $[0,T] \times \partial \Omega ,u(0,x) = f(x),x \in \Omega$. Assuming that ${\mathcal {L}_2}$ a priori inequalities are known for this equation, it is shown that if $F \in {H^s}([0,T] \times \Omega ),g \in {H^{s + 1/2}}([0,T] \times \partial \Omega ),f \in {H^s}(\Omega )$ satisfy the natural compatibility conditions associated with this equation, then the solution is of class ${C^p}$ from [0, T] to ${H^{s - p}}(\Omega ),0 \leq p \leq s$. These results are applied to mixed problems with distribution initial data and to quasi-linear mixed problems.References
- K. O. Friedrichs, Symmetric positive linear differential equations, Comm. Pure Appl. Math. 11 (1958), 333–418. MR 100718, DOI 10.1002/cpa.3160110306 L. Hörmander, Linear partial differential operators, Die Grundlehren der math. Wissenschaften, Band 116, Academic Press, New York; Springer-Verlag, Berlin, 1963. MR 28 #4221.
- Mitsuru Ikawa, Mixed problem for a hyperbolic system of the first order, Publ. Res. Inst. Math. Sci. 7 (1971/72), 427–454. MR 0330785, DOI 10.2977/prims/1195193549
- Tosio Kato, Linear evolution equations of “hyperbolic” type, J. Fac. Sci. Univ. Tokyo Sect. I 17 (1970), 241–258. MR 279626
- Heinz-Otto Kreiss, Initial boundary value problems for hyperbolic systems, Comm. Pure Appl. Math. 23 (1970), 277–298. MR 437941, DOI 10.1002/cpa.3160230304
- P. D. Lax and R. S. Phillips, Local boundary conditions for dissipative symmetric linear differential operators, Comm. Pure Appl. Math. 13 (1960), 427–455. MR 118949, DOI 10.1002/cpa.3160130307
- Frank J. Massey III, Abstract evolution equations and the mixed problem for symmetric hyperbolic systems, Trans. Amer. Math. Soc. 168 (1972), 165–188. MR 298231, DOI 10.1090/S0002-9947-1972-0298231-4
- Jeffrey Rauch, ${\cal L}_{2}$ is a continuable initial condition for Kreiss’ mixed problems, Comm. Pure Appl. Math. 25 (1972), 265–285. MR 298232, DOI 10.1002/cpa.3160250305
- Jeffrey Rauch and Michael Taylor, Penetrations into shadow regions and unique continuation properties in hyperbolic mixed problems, Indiana Univ. Math. J. 22 (1972/73), 277–285. MR 303098, DOI 10.1512/iumj.1972.22.22022 R. Sakamoto, Mixed problems for hyperbolic equations. I, J. Math. Kyoto Univ. 10 (1970), 349-373; II, Existence theorems with zero initial datas and energy inequalities with initial datas, ibid., 403-417. MR 44 #632a,b.
- David S. Tartakoff, Regularity of solutions to boundary value problems for first order systems, Indiana Univ. Math. J. 21 (1971/72), 1113–1129. MR 440182, DOI 10.1512/iumj.1972.21.21089
Bibliographic Information
- © Copyright 1974 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 189 (1974), 303-318
- MSC: Primary 35L50
- DOI: https://doi.org/10.1090/S0002-9947-1974-0340832-0
- MathSciNet review: 0340832