Subgroups of groups of central type
HTML articles powered by AMS MathViewer
- by Kathleen M. Timmer
- Trans. Amer. Math. Soc. 189 (1974), 133-161
- DOI: https://doi.org/10.1090/S0002-9947-1974-0357574-8
- PDF | Request permission
Abstract:
Let $\lambda$ be a linear character on the center Z of a finite group Z of a finite group H, such that (1) ${\lambda ^H} = \sum \nolimits _{i = 1}^p {{\phi _i}(1){\phi _i}}$ where the ${\phi _i}$’s are inequivalent irreducible characters on H of the same degree, and (2) if $\sum \nolimits _{i = 1}^p {{m_i}{\phi _i}(x) = 0}$ for some $x \in H$ and nonnegative integers ${m_i}$, then either ${\phi _i}(x) = 0$ for all i or ${m_i} = {m_j}$ for all i, j. The object of the paper is to describe finite groups which satisfy conditions (1) and (2) in terms of the multiplication of the group. If S is a p Sylow subgroup of the group H, and $R = S \cdot Z$, then H satisfies conditions (1) and (2) if and only if (a) $\{ x \in H:{x^{ - 1}}{h^{ - 1}}xh \in Z \Rightarrow \lambda ({x^{ - 1}}{h^{ - 1}}xh) = 1,h \in H\} /Z$ consists of elements of order a power of p in $H/Z$, and these elements form p conjugacy classes of $H/Z$, and (b) the elements of $\{ x \in R:{x^{ - 1}}{r^{ - 1}}xr \in Z \Rightarrow \lambda ({x^{ - 1}}{r^{ - 1}}xr) = 1,r \in R\} /Z$ form p conjugacy classes of $R/Z$.References
- F. R. DeMeyer, Galois theory in separable algebras over commutative rings, Illinois J. Math. 10 (1966), 287–295. MR 191922, DOI 10.1215/ijm/1256055110
- Frank DeMeyer, Groups with an irreducible character of large degree are solvable, Proc. Amer. Math. Soc. 25 (1970), 615–617. MR 274605, DOI 10.1090/S0002-9939-1970-0274605-6
- Frank R. DeMeyer and Gerald J. Janusz, Finite groups with an irreducible representation of large degree, Math. Z. 108 (1969), 145–153. MR 237629, DOI 10.1007/BF01114468
- Charles W. Curtis and Irving Reiner, Representation theory of finite groups and associative algebras, Pure and Applied Mathematics, Vol. XI, Interscience Publishers (a division of John Wiley & Sons, Inc.), New York-London, 1962. MR 0144979
- B. Huppert, Endliche Gruppen. I, Die Grundlehren der mathematischen Wissenschaften, Band 134, Springer-Verlag, Berlin-New York, 1967 (German). MR 0224703, DOI 10.1007/978-3-642-64981-3
- Herbert Pahlings, Gruppen mit irreduziblen Darstellungen hohen Grades, Mitt. Math. Sem. Giessen 85 (1970), 27–44 (German). MR 263938
Bibliographic Information
- © Copyright 1974 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 189 (1974), 133-161
- MSC: Primary 20C15
- DOI: https://doi.org/10.1090/S0002-9947-1974-0357574-8
- MathSciNet review: 0357574